• The Key is Being Metacognitive
  • The Big Picture
  • Learning Outcomes
  • Test your Existing Knowledge
  • Definitions of Critical Thinking
  • Learning How to Think Critically
  • Self Reflection Activity
  • End of Module Survey
  • Test Your Existing Knowledge
  • Interpreting Information Methodically
  • Using the SEE-I Method
  • Interpreting Information Critically
  • Argument Analysis
  • Learning Activities
  • Argument Mapping
  • Summary of Anlyzing Arguments
  • Fallacious Reasoning
  • Statistical Misrepresentation
  • Biased Reasoning
  • Common Cognitive Biases
  • Poor Research Methods - The Wakefield Study
  • Summary of How Reasoning Fails
  • Misinformation and Disinformation
  • Media and Digital Literacy
  • Information Trustworthiness
  • Summary of How Misinformation is Spread

Critical Thinking Tutorial: How To Analyze an Argument

Learning goal.

critical thinking analysis and evaluation of argument

How to Analyze an Argument

Learning Goal: In this module, you will learn how to analyze an argument through critical evaluation and analysis of the argument's premises and conclusion.

Learning Charter Pursuit:   Developing and applying appropriate skills of research, inquiry and knowledge creation and translation. 1

Our Learning Charter

1. "Our Learning Charter."  University  of Saskatchewan. 2018. Accessed November 21, 2018.  https://teaching.usask.ca/about/policies/learning-charter.php#OurLearningJourney  

  • << Previous: End of Module Survey
  • Next: The Big Picture >>
  • Library A to Z
  • Follow on Facebook
  • Follow on Twitter
  • Follow on YouTube
  • Follow on Instagram

The University of Saskatchewan's main campus is situated on  Treaty 6 Territory and the Homeland of the Métis.

© University of Saskatchewan Disclaimer | Privacy

  • Last Updated: Dec 14, 2023 3:51 PM
  • URL: https://libguides.usask.ca/CriticalThinkingTutorial
  • Undergraduate Courses
  • Postgraduate Taught Courses
  • Professional, Part-time and Evening Courses
  • PhDs and Research Masters
  • Online Courses
  • Micro-credentials
  • How to Apply
  • Fees & Funding
  • Modes of Study
  • Scholarships

Tree Aley

Choosing a course is one of the most important decisions you'll ever make! View our courses and see what our students and lecturers have to say about the courses you are interested in at the links below.

View Courses

  • Accommodation Advisory Service
  • Campus Activities
  • Student Support
  • Study Abroad
  • International Office
  • Mature Students
  • Students with Disabilities
  • Student Ambassador Programme
  • For Parents and Guardians
  • Access Student Information
  • Life in Galway

Bridge

University Life

Each year more than 4,000 choose University of Galway as their University of choice. Find out what life at University of Galway is all about here.

Read about life at University of Galway

  • News & Events
  • Strategy 2020-2025
  • Cois Coiribe (Publication)
  • University Leadership
  • Sustainability - National SDG Champion

Lake

About University of Galway

Since 1845, University of Galway has been sharing the highest quality teaching and research with Ireland and the world. Find out what makes our University so special – from our distinguished history to the latest news and campus developments.

About University of Galway

  • Adult Learning and Professional Development
  • College of Arts, Social Sciences, & Celtic Studies
  • College of Business, Public Policy and Law
  • College of Medicine, Nursing & Health Sciences
  • College of Science and Engineering

Building

Colleges & Schools

University of Galway has earned international recognition as a research-led university with a commitment to top quality teaching across a range of key areas of expertise.

Colleges and Schools

  • Research Areas
  • Research Office
  • Innovation Office
  • Researcher Development Centre
  • Research Community Portal
  • Research centres, institutes, and units

Buildings

Research & Innovation

University of Galway’s vibrant research community take on some of the most pressing challenges of our times.

  • Career Development Centre (for Employers)
  • Business Innovation Centre
  • Conference & Event Centre

Building

Guiding Breakthrough Research at University of Galway

We explore and facilitate commercial opportunities for the research community at University of Galway, as well as facilitating industry partnership.

  • Latest News
  • Alumni Services
  • Cois Coiribe
  • Alumni Awards
  • Follow our Social Channels
  • Update Your Details
  • Upcoming Alumni Events
  • Previous Alumni Events
  • NUI Elections

Graduates

Alumni & Friends

There are 128,000 University of Galway alumni worldwide. Stay connected to your alumni community! Join our social networks and update your details online.

  • About Engagement
  • Learning with Community
  • Community Partnerships
  • Research with Communities
  • University of Sanctuary

Building

Community Engagement

At University of Galway, we believe that the best learning takes place when you apply what you learn in a real world context. That's why many of our courses include work placements or community projects.

Real Learning

Gateway Pages

  • Prospective Students
  • Current Students
  • Ollscoil na Gaillimhe

critical thinking analysis and evaluation of argument

  • A High Contrast
  • Registration
  • Office 365 (Email)
  • Student Registry Helpdesk
  • Fees & Grants
  • Exam Timetables
  • Academic Skills Hub
  • Student Services
  • Student Volunteering
  • Students' Union
  • Financial System (Agresso)
  • Academic Records
  • Human Resources
  • Academic Terms Dates
  • Information Solutions & Services (IT Services)
  • Buildings & Estates
  • Service Desk
  • Colleges & Schools
  • Evaluating arguments and evidence
  • Getting Started
  • Getting Organised
  • Communication Skills
  • IT and Digital Skills
  • Reading and Research Skills
  • What is Critical Thinking?
  • How to develop your critical thinking skills
  • Reflective practice and reflective writing
  • Maths and Statistics
  • Assignments and Exams
  • Galway Exams 101

For many students, the terms ‘critical’ and ‘argument’ sound a bit negative. You are probably used to thinking of an ‘argument’ as a disagreement or a row – not a very pleasant thing to experience. But the word ‘argument’ has a different meaning in an academic context.

At university, an argument means a statement that is backed up with some kind of objective evidence. You may be trying to identify the arguments of others, or you may be trying to build your own arguments; for example, while writing an academic essay or report.

Often, there is an ‘overarching argument’ or thesis (for example: there is a strong case for the government increasing student fees and introducing a student loan system) supported by a number of ‘contributing arguments’ (for example: current funding mechanisms are unsustainable and inequitable, such a system can be tweaked so that repayments are linked to income after graduation, and so on). Each contributing argument needs to be backed up with evidence .

Of course, for most arguments, there are also ‘counter-arguments’ – that is, opposing arguments – and these must be fully considered as well (for example, if we stay with the student fees and loans example: there are other options for funding higher education in a sustainable and equitable way, linking repayments to income after graduation can be problematic, and so on). Counter-arguments also need to be evidence-based.

When reading and researching for your course, it is really important to be able to, firstly, identify arguments, and then to analyse and evaluate them. Generally a statement is an ‘argument’ if it:

  • Presents a particular point of view
  • Bases that view on objective evidence

If you come across an assertion that is not based on evidence that can reasonably be considered objective, it is just that – an assertion, not an argument. Also, a statement of fact is not an argument, although it might be evidence that could be used in support of an argument.

When evaluating an argument, here are some things that you might consider:

  • Who is making the argument?
  • What gives them authority to make the argument?
  • What evidence is given in support of the argument? Has this evidence been tested elsewhere? Could alternative approaches have been used?
  • Does the evidence upon which the argument is based come from a reliable and independent source? How do you know? Who funded the research that produced the evidence?
  • Are there alternative perspectives or counter-arguments? You should evaluate any counter-arguments in just the same way.
  • What are the implications of the argument, for example, for policy or for practice?

See our guide to ‘ Arguments, non-arguments and evidence ’ for more.

You might also find the Reading and Research Skills  section of the Academic Skills Hub useful. 

Arguments, non-arguments, and evidence

Arguments, non-arguments, and evidence PDF (181 KB)

Top tips for reflective practice and writing

Top tips for reflective practice and writing PDF (156 KB)

Manage Cookies

Some features need cookies to work properly. Cookies also let us (a) remember your preferences, (b) collect anonymous usage statistics, and (c) see how well our online ads are working.

No personal data is stored on these cookies but, under EU law, we still need to ask you this every 6 months. To learn more about our use of cookies, view our Privacy Policy .

Founded in 1845, we've been inspiring students for over 175 years. University of Galway has earned international recognition as a research-led university with a commitment to top quality teaching.

Co-Funded by the Irish Government and the EU

University of Galway, University Road, Galway, Ireland H91 TK33 T. +353 91 524411

Get Directions Send Us an Email

Twitter Instagram Facebook YouTube LinkedIn RSS

Galway Mini Map

© 2023 University of Galway. All Rights Reserved. Server AWS University of Galway is a registered charity. RCN 20002107

  • Privacy & Cookies
  • Contact & Enquiries
  • Accessibility

Logo for Open Library Publishing Platform

Want to create or adapt books like this? Learn more about how Pressbooks supports open publishing practices.

8 Arguments and Critical Thinking

J. anthony blair, introduction [1].

This chapter discusses two different conceptions of argument, and then discusses the role of arguments in critical thinking. It is followed by a chapter in which David Hitchcock carefully analyses one common concept of an argument.

1. Two meanings of ‘argument’

The word ‘argument’ is used in a great many ways. Any thorough understanding of arguments requires understanding ‘argument’ in each of its senses or uses. These may be divided into two large groupings: arguments had or engaged in , and arguments made or used . I begin with the former.

1.1 A n ‘a rgument’ as something two parties have with each othe r, something they get into, the kind of ‘argument’ one has in mind in de scribing two people as “arguing all the time ”

For many people outside academia or the practice of law, an argument is a quarrel . It is usually a verbal quarrel, but it doesn’t have to use words. If dishes are flying or people are glaring at each other in angry silence, it can still be an argument. What makes a quarrel an argument is that it involves a communication between two or more parties (however dysfunctional the communication may be) in which the parties disagree and in which that disagreement and reasons, actual or alleged, motivating it are expressed—usually in words or other communicative gestures.

Quarrels are emotional. The participants experience and express emotions, although that feature is not exclusive to arguments that are quarrels. People can and do argue emotionally, and (or) when inspired by strong emotions, when they are not quarrelling. Heated arguments are not necessarily quarrels; but quarrels tend to be heated.

What makes quarrels emotional in some cases is that at least one party experiences the disagreement as representing some sort of personal attack, and so experiences his or her ego or sense of self-worth as being threatened. Fear is a reaction to a perceived threat, and anger is a way of coping with fear and also with embarrassment and shame. In other cases, the argument about the ostensible disagreement is a reminder of or a pretext for airing another, deeper grievance. Jealousy and resentment fuel quarrels. Traces of ego-involvement often surface even in what are supposed to be more civilized argumentative exchanges, such as scholarly disputes. Quarrels tend not to be efficient ways of resolving the disagreements that gives rise to them because the subject of a disagreement changes as the emotional attacks escalate or because the quarrel was often not really about that ostensible disagreement in the first place.

In teaching that ‘argument’ has different senses, it is misleading to leave the impression (as many textbooks do) that quarrels are the only species of argument of this genus. In fact they are just one instance of a large class of arguments in this sense of extended, expressed, disagreements between or among two or more parties.

A dispute is an argument in this sense that need not be a quarrel. It is a disagreement between usually two parties about the legality, or morality, or the propriety on some other basis, of a particular act or policy. It can be engaged in a civil way by the disputants or their proxies (e.g., their spokespersons or their lawyers). Sometimes only the disputing parties settle their difference; sometimes a third party such as a mediator, arbitrator or judge is called in to impose a settlement.

A debate is another argument of this general kind. Debates are more or less formalized or regimented verbal exchanges between parties who might disagree, but in any case who take up opposing sides on an issue. Procedural rules that govern turn-taking, time available for each turn, and topics that may be addressed are agreed to when political opponents debate one another. Strict and precise rules of order govern who may speak, who must be addressed, sometimes time limits for interventions, in parliamentary or congressional debates in political decision-making bodies, or in formal intercollegiate competitive debates. Usually the “opponent” directly addressed in the debate is not the party that each speaker is trying to influence, so although the expressed goal is to “win” the debate, winning does not entail getting the opponent to concede. Instead, it calls for convincing an on-looking party or audience—the judge of the debate or the jury in a courtroom or the television audience or the press or the electorate as a whole—of the superior merits of one’s case for the opinion being argued for in the debate.

To be distinguished from a debate and a dispute by such factors as scale is a controversy . Think of such issues as the abortion controversy, the climate change controversy, the same-sex marriage controversy, the LGBT rights controversy, the animal rights controversy. The participants are many—often millions. The issues are complex and there are many disputes about details involved, including sometimes even formal debates between representatives of different sides. Typically there is a range of positions, and there might be several different sides each with positions that vary one from another. A controversy typically occurs over an extended period of time, often years and sometime decades long. But an entire controversy can be called an argument, as in, “the argument over climate change.” Controversies tend to be unregulated, unlike debates but like quarrels, although they need not be particularly angry even when they are emotional. Like quarrels, and unlike debates, the conditions under which controversies occur, including any constraints on them, are shaped by the participants.

Somewhere among quarrels, debates and controversies lie the theoretical arguments that theorists in academic disciplines engage in, in academic journals and scholarly monographs. In such arguments theorists take positions, sometimes siding with others and sometimes standing alone, and they argue back and forth about which theoretical position is the correct one. In a related type of argument, just two people argue back and forth about what is the correct position on some issue (including meta-level arguments about what is the correct way to frame the issue in the first place).

The stakes don’t have to be theories and the participants don’t have to be academics. Friends argue about which team will win the championship, where the best fishing spot is located, or what titles to select for the book club. Family members argue about how to spend their income, what school to send the children to, or whether a child is old enough to go on a date without a chaperone. Co-workers argue about the best way to do a job, whether to change service providers, whether to introduce a new product line, and so on. These arguments are usually amicable, whether or not they settle the question in dispute.

All of these kinds of “argument” in this sense of the term—quarrels, friendly disputes, arguments at work, professional arguments about theoretical positions, formal or informal debates, and various kinds of controversy—share several features.

  • They involve communications between or among two or more people. Something initiates the communication, and either something ends it or there are ways for participants to join and to exit the conversation. They entail turn-taking (less or more regimented), each side addressing the other side and in turn construing and assessing what the other has to say in reply and formulating and communicating a response to the replies of the other side. And, obviously, they involve the expression, usually verbal, of theses and of reasons for them or against alternatives and criticisms.
  • They have a telos or aim, although there seems to be no single end in mind for all of them or even for each of them. In a quarrel the goal might be to have one’s point of view prevail, to get one’s way, but it might instead (or in addition) be to humiliate the other person or to save one’s own self-respect. Some quarrels—think of the ongoing bickering between some long-married spouses—seem to be a way for two people to communicate, merely to acknowledge one another. In a debate, each side seeks to “win,” which can mean different things in different contexts ( cf. a collegiate debate vs. a debate between candidates in an election vs. a parliamentary debate). Some arguments seemed designed to convince the other to give up his position or accept the interlocutor’s position, or to get the other to act in some way or to adopt some policy. Some have the more modest goal of getting a new issue recognized for future deliberation and debate. Still others are clearly aimed not at changing anyone’s mind but at reinforcing or entrenching a point of view already held (as is usually the case with religious sermons or with political speeches to the party faithful). Some are intended to establish or to demonstrate the truth or reasonableness of some position or recommendation and (perhaps) also to get others to “see” that the truth has been established. Some seem designed to maintain disagreement, as when representatives of competing political parties argue with one another.
  • All these various kinds of argument are more or less extended, both in the sense that they occur over time, sometimes long stretches of time, and also in the sense that they typically involved many steps: extensive and complex support for a point of view and critique of its alternatives.
  • In nearly every case, the participants give reasons for the claims they make and they expect the other participants in the argument to give reasons for their claims. This is even a feature of quarrels, at least at the outset, although such arguments can deteriorate into name-calling and worse. (Notice that even the “yes you did; no I didn’t;…; did; didn’t” sequence of the Monty Python “Having an argument” skit breaks down and a reason is sought.)

The kinds of argument listed so far are all versions of having an argument (see Daniel J. O’Keefe, 1977, 1982). Some might think that this is not the sense of ‘argument’ that is pertinent to critical thinking instruction, but such arguments are the habitat of the kinds of argument that critical thinkers need to be able to identify, analyze and evaluate.

1.2 An argument a s something a person makes (or constructs, invents, borrows) consisting of purported reasons alleged to suggest, or support or prove a point and that is used for some purpose such as to persuade someone of some claim, to justify someone in maintaining the position claimed, or to test a claim .

When people have arguments—when they engage in one or another of the activities of arguing described above—one of the things they routinely do is present or allege or offer reasons in support of the claims that they advance, defend, challenge, dispute, question, or consider. That is, in having “arguments,” we typically make and use “arguments.” The latter obviously have to be arguments in different sense from the former. They are often called “reason-claim” complexes. If arguments that someone has had constitute a type of communication or communicative activity, arguments that someone has made or used are actual or potential contributions to such activities. Reason-claim complexes are typically made and used when engaged in an argument in the first sense, trying to convince someone of your point of view during a disagreement or dispute with them. Here is a list of some of the many definitions found in textbooks of ‘argument’ in this second sense.

“… here [the word ‘argument’] … is used in the … logical sense of giving reasons for or against some claim.” Understanding Arguments, Robert Fogelin and Walter Sinnott-Armstrong, 6th ed., p. 1. “Thus an argument is a discourse that contains at least two statements, one of which is asserted to be a reason for the other.” Monroe Beardsley, Practical Logic, p. 9. “An argument is a set of claims a person puts forward in an attempt to show that some further claim is rationally acceptable.” Trudy Govier. A Practical Study of Arguments, 5th ed., p. 3. An argument is “a set of clams some of which are presented as reasons for accepting some further claim.” Alec Fisher, Critical Thinking, An Introduction, p. 235. Argument: “A conclusion about an issue that is supported by reasons.” Sherry Diestler, Becoming a Critical Thinker, 4th ed., p. 403. “ Argument: An attempt to support a conclusion by giving reasons for it.” Robert Ennis, Critical Thinking, p. 396. “Argument – A form of thinking in which certain statements (reasons) are offered in support of another statement (conclusion).” John Chaffee, Thinking Critically, p. 415 “When we use the word argument in this book we mean a message which attempts to establish a statement as true or worthy of belief on the basis of other statements.” James B. Freeman, Thinking Logically, p. 20 “Argument. A sequence of propositions intended to establish the truth of one of the propositions.” Richard Feldman, Reason and Argument, p. 447. “Arguments consist of conclusions and reasons for them, called ‘premises’.” Wayne Grennan, Argument Evaluation, p. 5. Argument: “A set of claims, one of which, the conclusion is supported by [i.e., is supposed to provide a reason for] one or more of the other claims. Reason in the Balance, Sharon Bailin & Mark Battersby, p. 41.

These are not all compatible, and most of them define ‘argument’ using other terms—‘reasons’, ‘claims’, ‘propositions’, ‘statements’, ‘premises’ and ‘conclusions’—that are in no less need of definition than it is. In the next chapter, David Hitchcock offers a careful analysis of this concept of an argument.

Some define argument in this second sense as a kind of communication; others conceive it as a kind of set of propositions that can serve communicative functions, but others as well (such as inquiry). Either way, the communicative character, or function, of arguments has been the subject of much of the research in the past several decades. Most recently what some have called “multi-modal” argument has attracted attention, focusing on the various ways arguments can be communicated, especially visually or in a mix of verbal and visual modes of communication. Some have contended that smells and sounds can play roles in argument communication as well. This area of research interest would seem to have relevance for the analysis of arguments on the web.

1.3 Argumentation

‘Argumentation’ is another slippery term. It is used in several different senses.

Sometimes it is used to mean the communicative activity in which arguments are exchanged: “During their argumentation they took turns advancing their own arguments and criticizing one another’s arguments.” Sometimes ‘argumentation’ denotes the body of arguments used in an argumentative exchange: “The evening’s argumentation was of high quality.” And occasionally you will find it used to refer to the reasons or premises supporting a conclusion, as in: “The argumentation provided weak support for the thesis.” ‘Argumentation theory’ is the term often used to denote theory about the nature of arguments and their uses, including their uses in communications involving exchanges of arguments.

2 The relation between critical thinking and argument

2 .1 arguments are both tools of critical thinking and objects of critical thinking.

In … [one] sense, thought denotes belief resting upon some basis, that is, real or supposed knowledge going beyond what is directly present. … Some beliefs are accepted when their grounds have not themselves been considered …. … such thoughts may mean a supposition accepted without reference to its real grounds. These may be adequate, they may not; but their value with reference to the support they afford the belief has not been considered. Such thoughts grow up unconsciously and without reference to the attainment of correct belief. They are picked up—we know not how. From obscure sources and by unnoticed channels they insinuate themselves into acceptance and become unconsciously a part of our mental furniture. Tradition, instruction, imitation—all of which depend upon authority in some form, or appeal to our advantage, or fall in with strong passions—are responsible for them. Such thoughts are prejudices, that is, prejudgments, not judgments proper that rest upon a survey of evidence. (John Dewey, How We Think , pp. 4-5, emphasis added.)

People—all of us—routinely adopt beliefs and attitudes that are prejudices in Dewey’s sense of being prejudgments, “not judgments proper that rest upon a survey of evidence.” One goal of critical thinking education is to provide our students with the means to be able, when it really matters, to “properly survey” the grounds for beliefs and attitudes.

Arguments supply one such means. The grounds for beliefs and attitudes are often expressed, or expressible, as arguments for them. And the “proper survey” of these arguments is to test them by subjecting them to the critical scrutiny of counter-arguments.

Arguments also come into play when the issue is not what to believe about a contentious issue, but in order just to understand the competing positions. Not only are we not entitled to reject a claim to our belief if we cannot counter the arguments that support it; we are not in possession of an understanding of that claim if we cannot formulate the arguments that support it to the satisfaction of its proponents.

Furthermore, arguments can be used to investigate a candidate for belief by those trying “to make up their own minds” about it. The investigator tries to find and express the most compelling arguments for and against the candidate. Which arguments count as “most compelling” are the ones that survive vigorous attempts, using arguments, to refute or undermine them. These survivors are then compared against one another, the pros weighed against the cons. More arguments come into play in assessing the attributed weights.

In these ways, a facility with arguments serves a critical thinker well. Such a facility includes skill in recognizing, interpreting and evaluating arguments, as well as in formulating them. That includes skill in laying out complex arguments, in recognizing argument strengths and weaknesses, and in making a case for one’s critique. It includes the ability to distinguish the more relevant evidence from the less, and to discriminate between minor, fixable flaws and major, serious problems, in arguments. Thus the critical thinker is at once adept at using arguments in various ways and at the same time sensitive in judging arguments’ merits, applying the appropriate criteria.

Moreover, arguments in the sense of “reasons-claim” complexes surround us in our daily lives. Our “familiars”, as Gilbert (2014) has dubbed them—our family members, the friends we see regularly, shopkeepers and others whose services we patronize daily, our co-workers—engage us constantly in argumentative discussions in which they invoke arguments to try to get us to do things, to agree, to judge, to believe. The public sphere—the worlds of politics, commerce, entertainment, leisure activities, social media (see Jackson’s chapter)—is another domain in which arguments can be found, although (arguably) mere assertion predominates there. In the various roles we play as we go through life—child, parent, spouse or partner, student, worker, patient, subordinate or supervisor, citizen (voter, jurist, community member), observer or participant, etc.—we are invited with arguments to agree or disagree, approve or disapprove, seek or avoid. We see others arguing with one another and are invited to judge the merits of the cases they make. Some of these arguments are cogent and their conclusions merit our assent, but others are not and we should not be influenced by them. Yet others are suggestive and deserve further thought.

We can simply ignore many of these arguments, but others confront us and force us to decide whether or not to accept them. Often it is unclear whether someone has argued or done something else: just vented, perhaps, or explained rather than argued, or merely expressed an opinion without arguing for it, or was confused. So we initially might have to decide whether there is an argument that we need to deal with. When it is an argument, often in order to make up our minds about it we need first to get clear about exactly what the argument consists of. So even before we evaluate this argument we have to identify and analyze it. (These operations are discussed in Chapter 12.)

In the end we have to decide for ourselves whether the argument makes its case or falls short. Does the conclusion really follow from the premises? Is there enough evidence to justify the conclusion? Is it the right kind of evidence? Are there well-known objections or arguments against the conclusion that haven’t been acknowledged and need to be answered satisfactorily? Can they be answered? And are the premises themselves believable or otherwise acceptable? Are there other arguments, as good or better, that support the claim?

Critical thinking can (and should!) come into all of these decisions we need to make in the identification, the analysis and the assessment of arguments.

2 .2  Critical thinking about things other than arguments

Many critical thinking textbooks focus exclusively on the analysis and evaluation of arguments. While the centrality of arguments to the art of critical thinking is unquestionable, a strong case can be made that critical thinking has other objectives in addition to appreciating arguments. In their analysis of the concept of critical thinking, Fisher and Scriven suggest the following definition:

Critical thinking is skilled and active interpretation and evaluation of o b servations and communications , information and argumentation. (1997, p. 21, emphasis added)

We agree with the gist of this claim, but notice what Fisher and Scriven propose as the objects to which critical thinking applies. Not just argumentation, but as well observations, communications and information. About observations, they note that:

What one sees (hears, etc.) are usually things and happenings, and one often has to interpret what one sees, sometimes calling on critical thinking skills to do so, most obviously in cases where the context involves weak lighting, strong emotions, possible drug effects, or putatively magical or parapsychological phenomena. Only after the application of critical thinking—and sometimes not even then—does one know what one “really saw”. … When the filter of critical thinking has been applied to the observations, and only then, one can start reasoning towards further conclusions using these observations as premises. ( Ibid ., p, 37)

An example is the recent large number of convictions in the U.S.A. that originally relied on eyewitness testimony but that have been overturned on the basis of DNA evidence. [2] ,  [3]

The DNA evidence proved that the accused was not the culprit, so the moral certainty of the eyewitness had to have been mistaken. The observation of the eyewitness was flawed. He or she did not think critically about whether the conditions need ed to make a reliable o b servation were present (e.g., were strong emotions like fear involved? was the lighting good? has he or she ordinarily a good memory for faces? was there time to observe carefully? were there distractions present?). Neither, probably, did the lawyers on either side, or else they immorally suppressed what should have been their doubts. As a consequence, innocent people languished in jail for years and guilty parties went free.

Communications are another object for critical thought. When in reply to Harry’s question, “How are you doing?” Morgan says, in a clipped and dull voice and a strained expression on her face, “I’m fine”, Harry needs to be aware that “How are you doing?” often functions as equivalent to a simple greeting, like “Hi” and so the response “Fine” could similarly be functioning as a polite return of the greeting, like “Hi back to you”, and not as an accurate report of the speaker’s condition. Harry needs to notice and interpret other aspects of Morgan’s communication—her lethargic tone of voice and her anxious facial expression—and to recognize the incompatibility between those signals and the interpretation of her response as an accurate depiction of Morgan’s state of well-being. He needs to employ critical interpretive skills to realize that Morgan has communicated that she is not fine at all, but for some reason isn’t offering to talk about it.

If President Trump did in fact say to his then F.B.I. director James Comey, about the F.B.I. investigation of former National Security Advisor Michaell Flynn “I hope you can let this go”, was it legitimate for Comey to interpret the President’s comment as a directive? And was Comey’s response, which was simply to ignore President Trump’s alleged comment, an appropriate response? What was going on? It takes critical thinking to try to sort out these issues. Taking the President’s alleged comment literally, it just expresses his attitude towards the FBI investigation of Flynn. But communications from the President in a tête-à-tête in the White House with the Director of the FBI are not occasions for just sharing attitudes. This was not an occasion on which they could step out of their political roles and chat person-to-person. The President can legitimately be presumed to be communicating his wishes as to what his FBI Director should do, and such expressions of wishes are, in this context, to be normally understood as directives. On the other hand, for the President to direct that an ongoing investigation by the FBI be stopped, or that it come up with a pre-determined finding, is illegal: it’s obstruction of justice. So Comey seemed faced with at least two possible interpretations of what he took the President to be saying: either an out-of-place expression of his attitude towards the outcome of the Flynn investigation or an illegal directive. Which was the President’s intention? However, there are other possibilities.

Was President Trump a political tyro whose lack of political experience might have left him ignorant of the fact that the FBI Director has to keep investigations free of political interference? Or might Trump have thought that the Presidency conveys the authority to influence the outcome of criminal investigations? Or might President Trump have been testing Mr. Comey to see if he could be manipulated? And Mr. Comey could have responded differently. He could have said, “I wish we could let this go too, Mr. President, but there are questions about General Flynn’s conduct that have to be investigated, and as you know, we cannot interfere with an ongoing FBI investigation”. Such a response would have forced the President to take back what he allegedly said, withdrawing any suggestion that his comment was a directive, or else to make it plain that he was indeed directing Comey to obstruct justice. In the event, apparently Mr. Comey did not take this way out, which would at once have displayed loyalty to the President (by protecting him from explicitly obstructing justice) and also have affirmed the independence of the FBI from interference from the White House. Perhaps he thought that the President clearly had directed him to obstruct justice, and judged that giving him an opportunity explicitly to withdraw that directive amounted to overlooking that illegal act, which would be a violation of his responsibilities as Director of the FBI. If so, however, simply not responding to the President’s comment, the path Comey apparently chose, also amounted to turning a blind eye to what he judged to be President Trump’s illegal directive.

As these two examples illustrate, the interpretation of communications, and the appropriate response to them can require critical thinking: recognizing different functions of communication, and being sensitive to the implications of different contexts of communication; being sensitive to the roles communicators occupy and to the rights, obligations, and limits attached to such roles.

As Fisher and Scriven acknowledge, “defining information is itself a difficult task.” They make a useful start by distinguishing information from raw data (“the numbers or bare descriptions obtained from measurements or observations”, op . cit., p. 41). No critical thinking is required for the latter; just the pains necessary to record raw data accurately, In many cases, though, the interpretation of raw data, the meaning or significance that they are said to have, can require critical thinking.

One might go beyond Fisher and Scriven’s list of other things besides arguments to which critical thinking can be applied. A thoughtful appreciation of novels or movies, plays or poetry, paintings or sculptures requires skilled interpretation, imagining alternatives, thoughtful selection of appropriate criteria of evaluation and then the selection and application of appropriate standards, and more. A good interior designer must consider the effects and interactions of space and light and color and fabrics and furniture design, and coordinate these with clients’ lifestyles, habits and preferences. Advanced practical skills in various sciences come into play. A coach of a sports team must think about each individual team member’s skills and deficiencies, personality and life situation; about plays and strategies, opponents’ skills sets; approaches to games; and much more. Conventional approaches need to be reviewed as to their applicability to the current situation. Alternative possibilities need to be creatively imagined and critically assessed. And all of this is time-sensitive, sometimes calling for split-second decisions. The thinking involved in carrying out the tasks of composing a review of some work of literature or art or of coaching a sports team can be routine and conventional, or it can be imaginative, invoking different perspectives and challenging standard criteria.

The list could go on. The present point is that, while argument is central to critical thinking, critical thinking about and using arguments is not all there is to critical thinking. [4]

Bailin, Sharon & Battersby, Mark. (2010). Reason in the Balance , An I n quiry Approach to Critical Thinking , 1 st ed. Toronto: McGraw-Hill Ryerson.

Beardsley, Monroe C. (1950). Practical L ogic . Englewood Cliffs, NJ: Prentice-Hall.

Chaffee, John. 1985. Thinking Critically . Boston: Houghton Mifflin.

Dewey, John. (1910, 1991). How We Think . Lexington, MAD.C. Heath; Buffalo, NY: Prometheus Books.

Diestler, Sherry. (2005). Becoming a Critical Thinker , 4 th ed. Upper Saddle River, NJ: Pearson Education.

Ennis, Robert H. (1996). Critical Thinking . Upper Saddle River, NJ: Prentice-Hall.

Feldman, Richard. (1993). Reason and Argument , 2 nd ed. Upper Saddle River, NJ: Prentice-Hall.

Fisher, Alex.(2001). Critical Thinking, An Introduction . Cambridge: Cambridge University Press.

Fisher, Alec & Scriven, Michael. (1997). Critical Thinking, Its Definition and Assessment . Point

Reyes, CA: EdgePress; Norwich, UK: Center for Research in Critical Thinking.

Fogelin, Robert & Sinnott-Armstrong, Walter. (2001). Understanding A r guments , An Introduction to Informal Logic , 6 th ed. Belmont, CA: Wadsworth.

Freeman, James B. (1988.) Thinking Logically , Basic Concepts of Reaso n ing . Englewood Cliffs, NJ: Prentice-Hall.

Grennan, Wayne . (1984). Argument Evaluation . Lanham, MD: University Press of America.

Govier, Trudy. (2001). A Practical Study of Argument , 5 th ed. Belmont, CA: Wadsworth.

O’Keefe, Daniel J. (1977). Two concepts of argument. Journal of the Amer i can Forensic Association , 13 , 121-128.

O‘Keefe, Daniel J. (1982). The concepts of argument and arguing. In J. R. Cox & C. A. Willard (Eds.), Advances in Argumentation Theory and R e search , pp. 3-23. Carbondale, IL: Southern Illinois University Press.

  • © J. Anthony Blair ↵
  • According to the Innocence Project, “Eyewitness misidentification is the greatest contributing factor to wrongful convictions proven by DNA testing, playing a role in more than 70% of convictions [in the U.S.A.] overturned through DNA testing nationwide.” (https://www.innocenceproject.org/causes/eyewitness-misidentification/, viewed August 2017). ↵
  • I owe the general organization and many of the specific ideas of this chapter to a series of lectures by Jean Goodwin at the Summer Institute on Argumentation sponsored by the Centre for Research in Reasoning, Argumentation and Rhetoric at the University of Windsor. ↵

Studies in Critical Thinking Copyright © by J. Anthony Blair is licensed under a Creative Commons Attribution 4.0 International License , except where otherwise noted.

Share This Book

Library Home

Arguments in Context

critical thinking analysis and evaluation of argument

Thaddeus Robinson, Muhlenberg College

Copyright Year: 2021

Publisher: Muhlenberg College

Language: English

Formats Available

Conditions of use.

Attribution-NonCommercial

Learn more about reviews.

Reviewed by Sarah Lonelodge, Assistant Professor of English/Writing Program Director, Eastern New Mexico University on 12/19/23

Robinson presents a very comprehensive text focused on critical thinking and the analysis and evaluation of arguments. Numerous forms of argument are presented, and the author offers useful tools that students will be able to apply. The text does... read more

Comprehensiveness rating: 4 see less

Robinson presents a very comprehensive text focused on critical thinking and the analysis and evaluation of arguments. Numerous forms of argument are presented, and the author offers useful tools that students will be able to apply. The text does not offer students explicit instruction in creating or writing arguments, but this goal is not mentioned as one of the aims of the text. However, it is clear that students would be able to develop thoughtful arguments after reading and interacting with this text. While an index/glossary is not provided, the author presents a summary and key terms in a summary portion for each section.

Content Accuracy rating: 5

The content looks accurate and unbiased to me. Robinson provides a thorough discussion of various methods and possibilities for argument identification, analysis, and evaluation. The examples employed throughout the chapters tend to be based on very neutral situations.

Relevance/Longevity rating: 4

Because the text is focused on critical thinking, I do not see it becoming obsolete any time soon. Perhaps a few of the examples will eventually need updates, but most are fairly timeless. Robinson also presents an effective discussion of media literacy with social media and web-based arguments. Again, this presentation is effective; however, the growth of social media and the expansion of platforms and apps will require updates in the near future to maintain relevance.

Clarity rating: 4

The content of the book is clear and well organized; however, some terminology may be difficult for some students to grasp easily. Depending on the level of student who is using this text, the language may not be an issue. For first- or second-year students, the style and word choice may cause some frustration or may require the use of a dictionary.

Consistency rating: 5

The book is very consistent in its use of language, examples, etc., and its organization/framework is easy to navigate. From chapter to chapter, students will know what to expect.

Modularity rating: 5

I think the book is well modulated. Robinson has created seven distinct units or sections, and each of them have 3-5 chapters of relatively similar length. The length may feel a bit long for some readers, but this determination will depend on the level of student assigned this text.

Organization/Structure/Flow rating: 5

Each unit/section is well organized into a text overall and would flow well from one concept to the next. Within each unit/section, the chapters follow a similarly effective organization pattern. I particularly appreciate the summaries at the end of each unit/section as these additions would likely offer students a clear picture of the outcomes of what they read.

Interface rating: 5

I don't see any interface or navigation issues. The display is well organized and easy to follow and read.

Grammatical Errors rating: 5

I didn't notice any grammatical issues.

Cultural Relevance rating: 5

I did not notice any culturally insensitive or offensive content. The few images used were neutral and typically more decorative than content specific. The examples utilized through the book were based on concepts that are unlikely to offend anyone, such as a sibling borrowing a vehicle, sports, calculating GPA, and similar topics.

I think this book would be very useful for upper-division college courses in which students would need to identify, analyze, and evaluate arguments. The text is very specific about types and uses of argumentation, and Robinson provides a number of quick, illustrative examples that would likely help readers comprehend the concepts presented.

Table of Contents

  • I. An Introduction to Reasoning
  • II. Argument Analysis
  • III. An Introduction to Evaluation
  • IV. An Introduction to Deductive Arguments
  • V. Common Inductive Arguments
  • VI. Social Arguments
  • VII. Scientific Reasoning

Ancillary Material

About the book.

Arguments in Context is a comprehensive introduction to critical thinking that covers all the basics in student-friendly language.  Intended for use in a semester-long course, the text features classroom-tested examples and exercises that have been chosen to emphasize the relevance and applicability of the subject to everyday life.  Three themes are developed as the text proceeds from argument identification and analysis, to the standards and techniques of evaluation: (i) the importance of asking the right questions, (ii) the influence of biases, cognitive illusions, and other psychological factors, and (iii) the ways that social situations and structures can enhance and impoverish our thinking.  On this last point, the text includes sustained discussion of disagreement, cooperative dialogue, testimony, trust, and social media.  Overall, the text aims to equip readers with a set of tools for working through important decisions and disagreements, and to help them become more careful and active thinkers.

About the Contributors

Thaddeus Robinson . Associate Professor of Philosophy, Muhlenberg College

Contribute to this Page

  • Learning to analyze and critically evaluate ideas, arguments, and points of view

Series Editor : Michael Theall, Youngstown State University Authors: Patricia Armstrong, Vanderbilt University; Sonja Moyer, US Army Command and General Staff College; Katherine Stanton, Princeton University

The critical evaluation of ideas, arguments, and points of view is important for the development of students as autonomous thinkers (1, 2). It is only through this critical evaluation that students can distinguish among competing claims for truth and determine which arguments and points of views they can trust and those of which they should be skeptical. This work lays the foundation for students’ progressing to staking their own claims in an intellectually rigorous fashion. Learning how to analyze and critically evaluate arguments thus helps them to develop a sound framework to test their own arguments and advance their own points of view.Objective 11 reflects an important component of the educational process – training students in the habits of thought in our disciplines. IDEA research has found that it is related to Objectives #6 through #10 and Objective #12, which all address activities at the upper levels of cognitive taxonomies, activities requiring application and frequent synthesis and evaluation of ideas and events (3). Active processing is critical to our students’ long-term retention of ideas and concepts and their ability to transfer those ideas and concepts to other contexts (4).

There is a link between this objective and developing deeper understandings of the self and the world. By encouraging our students to adopt a critical framework, we prepare them not only to engage in scholarly conversation and debate in our disciplines, but also to be engaged citizens in a democratic society. As Patricia King points out,

a student who appreciates why people approach controversial issues in her discipline from different perspectives is more likely to see and appreciate the reasons people approach social controversies from different perspectives. By the same token, a student who evaluates knowledge claims in his major by reference to the strength of the evidence in support of conflicting hypotheses would also be more inclined to evaluate contradictory claims about current moral issues by reference to the weight of available evidence (5, p. 23).

The ability to weigh alternatives, make decisions, and evaluate contradictory evidence is crucial to scholastic endeavors and adult life more generally—to personal happiness, professional success, and civic engagement.

To achieve this and related objectives, instruction must incorporate intellectual challenge and activity; opportunities for creative or original work; finding and using information and translating that information into coherent communication; and opportunities to produce original work rather than simply recalling information. This is supported by IDEA research finding that instructors stressing this objective frequently stimulate students to intellectual effort (#8), introduce stimulating ideas about the subject (#13), ask students to share ideas (#16), and assign work that requires original or creative thinking (#19). For additional information about this objective, see IDEA Paper #37 Helping Your Students Develop Critical Thinking Skills. [PDF]

Helpful Hints

Teaching students “how to think” may begin by alerting them to the kinds of questions and problems that interest scholars or professionals in your field. So you may consider organizing your courses around such questions and problems to stimulate your students’ intellectual interest. Rather than simply presenting information, be explicit with your students about how you approach such questions, defining critical thinking in your field and modeling disciplinary ways of thought. Engage students in activities that require sophisticated thinking and design assessments that call on students to demonstrate thinking skills. Below, we provide specific ideas for how to teach students to analyze and critically evaluate ideas and assess their abilities to do so. These activities and assessments require students to identify assumptions, weigh competing evidence, make decisions, imagine alternatives, and build arguments.

John Bean writes that once professors decide to focus on developing critical thinking skills, “much of their classroom preparation time shifts from planning and preparing lectures to planning and preparing critical thinking problems for students to wrestle with” (6, p. 122). Below, we suggest a series of what he might call “critical thinking tasks” that give students practice—and the opportunity to receive feedback on—analyzing and critically evaluating ideas, arguments, and points of view.

  • In humanities and social science courses, keep the reading load manageable and model for students how to read critically and to evaluate arguments in your field (see IDEA Paper #40 Getting Students to Read: Fourteen Tips [PDF]).
  • In math, sciences, and engineering courses, encourage students participating in study groups not only to share ideas for solving problems but also to provide reasons for the problem solving ideas they advance.
  • Have students respond to an editorial in a newspaper or to a review essay in a scholarly journal. For that response, ask students to identify unstated assumptions, biases, and points of views and show how they undermine the argument the author is making.
  • Teach students to use a pro and con grid to analyze ideas and points of view (7, see pages 168-171).
  • Take time in science and engineering classes to explore the ethical considerations of research questions and experimental design.
  • In organized class debates, ask students to argue for a point of view counter to their own.
  • Give students “ill-structured problems” in class to work through. Such problems have no known answer or solution and cannot be solved with formal rules of logic or mathematical formulas. Ask students to come up with multiple solutions for each problem and rank the viability of each solution.
  • Teach students the “believing and doubting game” (Elbow, cited in 6, p.142), which asks them to be both sympathetic and skeptical readers.
  • Help students develop strategies for systematically gathering data according to methodologies in your discipline, assessing the quality and relevance of the data, evaluating sources, and interpreting the data (5, p. 24).
  • Encourage students to enter into dialogue with the sources they read; encourage them to ask questions, give assent, or protest in the margins of what they read.
  • Train students to identify the author’s audience and purpose when they read.
  • Encourage students to engage their critical reasoning skills outside of the classroom (5, p. 24).

Assessment Issues

To teach critical evaluation, we must define critical thinking in general and in the discipline, model habits of disciplinary thought, engage students in activities that require sophisticated thinking, and design assessments that call on students to demonstrate thinking skills. Instructional assignments and activities that promote critical thinking have to do more than present information and ask for recall. Rather, they must ask students to demonstrate their thinking, including their analysis and critical evaluation of ideas, arguments, and points of view. These assignments ask students to do more than reproduce what they know; they ask them to produce new knowledge.

Angelo and Cross (7) offer many techniques for assessing critical thinking, problem solving, analysis, and related skills. Echoing and expanding on their ideas, we make the following suggestions:

  • Design a writing assignment that asks students to test a critic’s ideas (or an everyday assumption) against a primary text or texts.
  • Ask students to apply a theory they’ve learned in a social science class by designing an experiment to test the theory. Have them carry out the experiment and document the results.
  • Design a writing assignment that prompts students to position themselves within a scholarly or real-life debate.
  • Ask students to review a scientific paper, assessing the evidence the authors use and how they use it.
  • Allow students to choose a current political issue relevant to a community to which they are attached. Have them research both major parties’ point of view on this issue and critically analyze them. As a writing assignment or project, ask students to agree with one major party’s stand on this issue and justify their choice.
  • Have students use a double-entry journal for reflection and self-assessment of this learning objective, using guided questioning. The journal helps faculty to assess the affective domain, and helps students through possible “road blocks” in the process of learning to analyze and critically evaluate ideas, arguments, and points of view. It also reinforces that this process is ongoing, not just an assignment for a class. Sample guided questions include: What happened (when you analyzed and critically evaluated ideas, arguments, and points of view)? What was your reaction as you went through this process? What did you learn about yourself? How can you apply what you learned to your education or your life?
  • Construct a rubric (i.e. scoring guide) to provide guidelines for critical analysis and evaluation so students know what to expect when they are assessed. The criteria and standards for this rubric may include the Elements of Reasoning and Intellectual Standards in Paul and Elder’s Critical Thinking (8).

References and Resources

  • Perry, W. G. (1999). Forms of ethical and intellectual development in the college years. San Francisco: Jossey-Bass.
  • Brookfield, S. D. (1987). Developing critical thinkers. San Francisco: Jossey-Bass.
  • Bloom, B. (Ed.). (1984). Taxonomy of educational objectives : Book 1, Cognitive Domain (2nd ed.). New York, Longman. See pp. 120-121, 162-163, 185-187.
  • Halpern, D. F., & Hakel, M. D. (2003). Applying the science of learning to the university and beyond. Change , 35 (4).
  • King, P. (2000). Learning to make reflective judgments. In Baxter-Magolda, M. B. Ed.), “Teaching to promote intellectual and personal maturity.” New Directions for Teaching and Learning, 82. San Francisco: Jossey-Bass.
  • Bean, J. C. (1996). Engaging ideas: The professor’s guide to integrating writing, critical thinking, and active learning in the classroom . San Francisco: Jossey-Bass.
  • Angelo, T., & Cross, P. (1993). Classroom assessment techniques (2nd ed.). San Francisco: Jossey-Bass.
  • Paul, R., & Elder, L. (2002). Critical thinking: Tools for taking charge of your learning and your life. Instructor’s Manual . NJ: Prentice Hall.

Related POD-IDEA Center Notes

  • IDEA Item #8 “Stimulated students to intellectual effort beyond that required by most courses,” Nancy McClure
  • IDEA Item #13 “Introduced stimulating ideas about the subject,” Michael Theall
  • IDEA Item #16 “Asked students to share ideas and experiences with others whose backgrounds and viewpoints differ from their own,” Jeff King
  • IDEA Item #19 “Gave projects, tests, or assignments that required original or creative thinking,” Cynthia Desrochers

Additional Resources

  • IDEA Paper No. 38 Enhancing Learning – and More! – Through Cooperative Learning , Millis
  • IDEA Paper No. 37 Helping Your Students Develop Critical Thinking Skills, Lynch and Wolcott
  • IDEA Paper No. 40 Getting Students to Read: Fourteen Tips, Hobson
  • IDEA Paper No. 42 Integrated Course Design , Fink
  • Gaining A Basic Understanding of the Subject
  • Developing knowledge and understanding of diverse perspectives, global awareness, or other cultures
  • Learning to apply course material
  • Developing specific skills, competencies, and points of view needed by professionals in the field most closely related to this course
  • Acquiring skills in working with others as a member of a team
  • Developing creative capacities
  • Gaining a broader understanding and appreciation of intellectual/cultural activity
  • Developing skill in expressing myself orally or in writing
  • Learning how to find, evaluate, and use resources to explore a topic in depth
  • Developing ethical reasoning and/or ethical decision making
  • Learning to apply knowledge and skills to benefit others or serve the public good
  • Learning appropriate methods for collecting, analyzing, and interpreting numerical information

The Peak Performance Center

The Peak Performance Center

The pursuit of performance excellence, critical thinking.

Critical Thinking header

Critical thinking refers to the process of actively analyzing, assessing, synthesizing, evaluating and reflecting on information gathered from observation, experience, or communication. It is thinking in a clear, logical, reasoned, and reflective manner to solve problems or make decisions. Basically, critical thinking is taking a hard look at something to understand what it really means.

Critical Thinkers

Critical thinkers do not simply accept all ideas, theories, and conclusions as facts. They have a mindset of questioning ideas and conclusions. They make reasoned judgments that are logical and well thought out by assessing the evidence that supports a specific theory or conclusion.

When presented with a new piece of new information, critical thinkers may ask questions such as;

“What information supports that?”

“How was this information obtained?”

“Who obtained the information?”

“How do we know the information is valid?”

“Why is it that way?”

“What makes it do that?”

“How do we know that?”

“Are there other possibilities?”

Critical Thinking

Combination of Analytical and Creative Thinking

Many people perceive critical thinking just as analytical thinking. However, critical thinking incorporates both analytical thinking and creative thinking. Critical thinking does involve breaking down information into parts and analyzing the parts in a logical, step-by-step manner. However, it also involves challenging consensus to formulate new creative ideas and generate innovative solutions. It is critical thinking that helps to evaluate and improve your creative ideas.

Critical Thinking Skills

Elements of Critical Thinking

Critical thinking involves:

  • Gathering relevant information
  • Evaluating information
  • Asking questions
  • Assessing bias or unsubstantiated assumptions
  • Making inferences from the information and filling in gaps
  • Using abstract ideas to interpret information
  • Formulating ideas
  • Weighing opinions
  • Reaching well-reasoned conclusions
  • Considering alternative possibilities
  • Testing conclusions
  • Verifying if evidence/argument support the conclusions

Developing Critical Thinking Skills

Critical thinking is considered a higher order thinking skills, such as analysis, synthesis, deduction, inference, reason, and evaluation. In order to demonstrate critical thinking, you would need to develop skills in;

Interpreting : understanding the significance or meaning of information

Analyzing : breaking information down into its parts

Connecting : making connections between related items or pieces of information.

Integrating : connecting and combining information to better understand the relationship between the information.

Evaluating : judging the value, credibility, or strength of something

Reasoning : creating an argument through logical steps

Deducing : forming a logical opinion about something based on the information or evidence that is available

Inferring : figuring something out through reasoning based on assumptions and ideas

Generating : producing new information, ideas, products, or ways of viewing things.

Blooms Taxonomy

Bloom’s Taxonomy Revised

Mind Mapping

Chunking Information

Brainstorming

critical thinking analysis and evaluation of argument

Copyright © 2024 | WordPress Theme by MH Themes

web analytics

View Resource

  • Number of visits 580
  • Number of saves 50

Critical Thinking: Analysis and Evaluation of Argument

  • Report this resource

Description

Creative Commons Attribution

Quality of Explanation of the Subject Matter: Superior (3)

The subject is well explained.

Quality of Instructional and Practice Exercises: Strong (2)

The object is superior in regards to offering a sufficient number of well-written exercises which support mastery of targeted skills. The object is limited in that these exercises are not supported by accurate answer keys.

Utility of Materials Designed to Support Teaching: Limited (1)

The object is superior in regards to offering a sufficient number of well-written exercises which support mastery of targeted skills, as well as their explanations. The object is limited in that these exercises are not supported by an answer keys. For this subject, it is imperative that students be able to check their work against an answer key.

An answer key for the exercises would be appreciated by beginning students.

AASL 21st Century Learner Standards 2007

Learning Domain: Inquiry, Critical Thinking, and Knowledge Acquisition

Standard: Evaluate information found in selected sources on the basis of accuracy, validity, appropriateness for needs, importance, and social and cultural context.

Degree of Alignment: Not Rated (0 users)

Evaluations

Achieve oer.

Degree of AlignmentN/A
Quality of Explanation of the Subject Matter3 (1 user)
Utility of Materials Designed to Support Teaching1 (1 user)
Quality of AssessmentsN/A
Quality of Technological InteractivityN/A
Quality of Instructional and Practice Exercises2 (1 user)
Opportunities for Deeper Learning3 (1 user)
  • Critical Thinking
  • Washington 100
  • Open Washington

Review Criteria

SEP home page

  • Table of Contents
  • Random Entry
  • Chronological
  • Editorial Information
  • About the SEP
  • Editorial Board
  • How to Cite the SEP
  • Special Characters
  • Advanced Tools
  • Support the SEP
  • PDFs for SEP Friends
  • Make a Donation
  • SEPIA for Libraries
  • Entry Contents

Bibliography

Academic tools.

  • Friends PDF Preview
  • Author and Citation Info
  • Back to Top

Critical Thinking

Critical thinking is a widely accepted educational goal. Its definition is contested, but the competing definitions can be understood as differing conceptions of the same basic concept: careful thinking directed to a goal. Conceptions differ with respect to the scope of such thinking, the type of goal, the criteria and norms for thinking carefully, and the thinking components on which they focus. Its adoption as an educational goal has been recommended on the basis of respect for students’ autonomy and preparing students for success in life and for democratic citizenship. “Critical thinkers” have the dispositions and abilities that lead them to think critically when appropriate. The abilities can be identified directly; the dispositions indirectly, by considering what factors contribute to or impede exercise of the abilities. Standardized tests have been developed to assess the degree to which a person possesses such dispositions and abilities. Educational intervention has been shown experimentally to improve them, particularly when it includes dialogue, anchored instruction, and mentoring. Controversies have arisen over the generalizability of critical thinking across domains, over alleged bias in critical thinking theories and instruction, and over the relationship of critical thinking to other types of thinking.

2.1 Dewey’s Three Main Examples

2.2 dewey’s other examples, 2.3 further examples, 2.4 non-examples, 3. the definition of critical thinking, 4. its value, 5. the process of thinking critically, 6. components of the process, 7. contributory dispositions and abilities, 8.1 initiating dispositions, 8.2 internal dispositions, 9. critical thinking abilities, 10. required knowledge, 11. educational methods, 12.1 the generalizability of critical thinking, 12.2 bias in critical thinking theory and pedagogy, 12.3 relationship of critical thinking to other types of thinking, other internet resources, related entries.

Use of the term ‘critical thinking’ to describe an educational goal goes back to the American philosopher John Dewey (1910), who more commonly called it ‘reflective thinking’. He defined it as

active, persistent and careful consideration of any belief or supposed form of knowledge in the light of the grounds that support it, and the further conclusions to which it tends. (Dewey 1910: 6; 1933: 9)

and identified a habit of such consideration with a scientific attitude of mind. His lengthy quotations of Francis Bacon, John Locke, and John Stuart Mill indicate that he was not the first person to propose development of a scientific attitude of mind as an educational goal.

In the 1930s, many of the schools that participated in the Eight-Year Study of the Progressive Education Association (Aikin 1942) adopted critical thinking as an educational goal, for whose achievement the study’s Evaluation Staff developed tests (Smith, Tyler, & Evaluation Staff 1942). Glaser (1941) showed experimentally that it was possible to improve the critical thinking of high school students. Bloom’s influential taxonomy of cognitive educational objectives (Bloom et al. 1956) incorporated critical thinking abilities. Ennis (1962) proposed 12 aspects of critical thinking as a basis for research on the teaching and evaluation of critical thinking ability.

Since 1980, an annual international conference in California on critical thinking and educational reform has attracted tens of thousands of educators from all levels of education and from many parts of the world. Also since 1980, the state university system in California has required all undergraduate students to take a critical thinking course. Since 1983, the Association for Informal Logic and Critical Thinking has sponsored sessions in conjunction with the divisional meetings of the American Philosophical Association (APA). In 1987, the APA’s Committee on Pre-College Philosophy commissioned a consensus statement on critical thinking for purposes of educational assessment and instruction (Facione 1990a). Researchers have developed standardized tests of critical thinking abilities and dispositions; for details, see the Supplement on Assessment . Educational jurisdictions around the world now include critical thinking in guidelines for curriculum and assessment.

For details on this history, see the Supplement on History .

2. Examples and Non-Examples

Before considering the definition of critical thinking, it will be helpful to have in mind some examples of critical thinking, as well as some examples of kinds of thinking that would apparently not count as critical thinking.

Dewey (1910: 68–71; 1933: 91–94) takes as paradigms of reflective thinking three class papers of students in which they describe their thinking. The examples range from the everyday to the scientific.

Transit : “The other day, when I was down town on 16th Street, a clock caught my eye. I saw that the hands pointed to 12:20. This suggested that I had an engagement at 124th Street, at one o’clock. I reasoned that as it had taken me an hour to come down on a surface car, I should probably be twenty minutes late if I returned the same way. I might save twenty minutes by a subway express. But was there a station near? If not, I might lose more than twenty minutes in looking for one. Then I thought of the elevated, and I saw there was such a line within two blocks. But where was the station? If it were several blocks above or below the street I was on, I should lose time instead of gaining it. My mind went back to the subway express as quicker than the elevated; furthermore, I remembered that it went nearer than the elevated to the part of 124th Street I wished to reach, so that time would be saved at the end of the journey. I concluded in favor of the subway, and reached my destination by one o’clock.” (Dewey 1910: 68–69; 1933: 91–92)

Ferryboat : “Projecting nearly horizontally from the upper deck of the ferryboat on which I daily cross the river is a long white pole, having a gilded ball at its tip. It suggested a flagpole when I first saw it; its color, shape, and gilded ball agreed with this idea, and these reasons seemed to justify me in this belief. But soon difficulties presented themselves. The pole was nearly horizontal, an unusual position for a flagpole; in the next place, there was no pulley, ring, or cord by which to attach a flag; finally, there were elsewhere on the boat two vertical staffs from which flags were occasionally flown. It seemed probable that the pole was not there for flag-flying.

“I then tried to imagine all possible purposes of the pole, and to consider for which of these it was best suited: (a) Possibly it was an ornament. But as all the ferryboats and even the tugboats carried poles, this hypothesis was rejected. (b) Possibly it was the terminal of a wireless telegraph. But the same considerations made this improbable. Besides, the more natural place for such a terminal would be the highest part of the boat, on top of the pilot house. (c) Its purpose might be to point out the direction in which the boat is moving.

“In support of this conclusion, I discovered that the pole was lower than the pilot house, so that the steersman could easily see it. Moreover, the tip was enough higher than the base, so that, from the pilot’s position, it must appear to project far out in front of the boat. Moreover, the pilot being near the front of the boat, he would need some such guide as to its direction. Tugboats would also need poles for such a purpose. This hypothesis was so much more probable than the others that I accepted it. I formed the conclusion that the pole was set up for the purpose of showing the pilot the direction in which the boat pointed, to enable him to steer correctly.” (Dewey 1910: 69–70; 1933: 92–93)

Bubbles : “In washing tumblers in hot soapsuds and placing them mouth downward on a plate, bubbles appeared on the outside of the mouth of the tumblers and then went inside. Why? The presence of bubbles suggests air, which I note must come from inside the tumbler. I see that the soapy water on the plate prevents escape of the air save as it may be caught in bubbles. But why should air leave the tumbler? There was no substance entering to force it out. It must have expanded. It expands by increase of heat, or by decrease of pressure, or both. Could the air have become heated after the tumbler was taken from the hot suds? Clearly not the air that was already entangled in the water. If heated air was the cause, cold air must have entered in transferring the tumblers from the suds to the plate. I test to see if this supposition is true by taking several more tumblers out. Some I shake so as to make sure of entrapping cold air in them. Some I take out holding mouth downward in order to prevent cold air from entering. Bubbles appear on the outside of every one of the former and on none of the latter. I must be right in my inference. Air from the outside must have been expanded by the heat of the tumbler, which explains the appearance of the bubbles on the outside. But why do they then go inside? Cold contracts. The tumbler cooled and also the air inside it. Tension was removed, and hence bubbles appeared inside. To be sure of this, I test by placing a cup of ice on the tumbler while the bubbles are still forming outside. They soon reverse” (Dewey 1910: 70–71; 1933: 93–94).

Dewey (1910, 1933) sprinkles his book with other examples of critical thinking. We will refer to the following.

Weather : A man on a walk notices that it has suddenly become cool, thinks that it is probably going to rain, looks up and sees a dark cloud obscuring the sun, and quickens his steps (1910: 6–10; 1933: 9–13).

Disorder : A man finds his rooms on his return to them in disorder with his belongings thrown about, thinks at first of burglary as an explanation, then thinks of mischievous children as being an alternative explanation, then looks to see whether valuables are missing, and discovers that they are (1910: 82–83; 1933: 166–168).

Typhoid : A physician diagnosing a patient whose conspicuous symptoms suggest typhoid avoids drawing a conclusion until more data are gathered by questioning the patient and by making tests (1910: 85–86; 1933: 170).

Blur : A moving blur catches our eye in the distance, we ask ourselves whether it is a cloud of whirling dust or a tree moving its branches or a man signaling to us, we think of other traits that should be found on each of those possibilities, and we look and see if those traits are found (1910: 102, 108; 1933: 121, 133).

Suction pump : In thinking about the suction pump, the scientist first notes that it will draw water only to a maximum height of 33 feet at sea level and to a lesser maximum height at higher elevations, selects for attention the differing atmospheric pressure at these elevations, sets up experiments in which the air is removed from a vessel containing water (when suction no longer works) and in which the weight of air at various levels is calculated, compares the results of reasoning about the height to which a given weight of air will allow a suction pump to raise water with the observed maximum height at different elevations, and finally assimilates the suction pump to such apparently different phenomena as the siphon and the rising of a balloon (1910: 150–153; 1933: 195–198).

Diamond : A passenger in a car driving in a diamond lane reserved for vehicles with at least one passenger notices that the diamond marks on the pavement are far apart in some places and close together in others. Why? The driver suggests that the reason may be that the diamond marks are not needed where there is a solid double line separating the diamond lane from the adjoining lane, but are needed when there is a dotted single line permitting crossing into the diamond lane. Further observation confirms that the diamonds are close together when a dotted line separates the diamond lane from its neighbour, but otherwise far apart.

Rash : A woman suddenly develops a very itchy red rash on her throat and upper chest. She recently noticed a mark on the back of her right hand, but was not sure whether the mark was a rash or a scrape. She lies down in bed and thinks about what might be causing the rash and what to do about it. About two weeks before, she began taking blood pressure medication that contained a sulfa drug, and the pharmacist had warned her, in view of a previous allergic reaction to a medication containing a sulfa drug, to be on the alert for an allergic reaction; however, she had been taking the medication for two weeks with no such effect. The day before, she began using a new cream on her neck and upper chest; against the new cream as the cause was mark on the back of her hand, which had not been exposed to the cream. She began taking probiotics about a month before. She also recently started new eye drops, but she supposed that manufacturers of eye drops would be careful not to include allergy-causing components in the medication. The rash might be a heat rash, since she recently was sweating profusely from her upper body. Since she is about to go away on a short vacation, where she would not have access to her usual physician, she decides to keep taking the probiotics and using the new eye drops but to discontinue the blood pressure medication and to switch back to the old cream for her neck and upper chest. She forms a plan to consult her regular physician on her return about the blood pressure medication.

Candidate : Although Dewey included no examples of thinking directed at appraising the arguments of others, such thinking has come to be considered a kind of critical thinking. We find an example of such thinking in the performance task on the Collegiate Learning Assessment (CLA+), which its sponsoring organization describes as

a performance-based assessment that provides a measure of an institution’s contribution to the development of critical-thinking and written communication skills of its students. (Council for Aid to Education 2017)

A sample task posted on its website requires the test-taker to write a report for public distribution evaluating a fictional candidate’s policy proposals and their supporting arguments, using supplied background documents, with a recommendation on whether to endorse the candidate.

Immediate acceptance of an idea that suggests itself as a solution to a problem (e.g., a possible explanation of an event or phenomenon, an action that seems likely to produce a desired result) is “uncritical thinking, the minimum of reflection” (Dewey 1910: 13). On-going suspension of judgment in the light of doubt about a possible solution is not critical thinking (Dewey 1910: 108). Critique driven by a dogmatically held political or religious ideology is not critical thinking; thus Paulo Freire (1968 [1970]) is using the term (e.g., at 1970: 71, 81, 100, 146) in a more politically freighted sense that includes not only reflection but also revolutionary action against oppression. Derivation of a conclusion from given data using an algorithm is not critical thinking.

What is critical thinking? There are many definitions. Ennis (2016) lists 14 philosophically oriented scholarly definitions and three dictionary definitions. Following Rawls (1971), who distinguished his conception of justice from a utilitarian conception but regarded them as rival conceptions of the same concept, Ennis maintains that the 17 definitions are different conceptions of the same concept. Rawls articulated the shared concept of justice as

a characteristic set of principles for assigning basic rights and duties and for determining… the proper distribution of the benefits and burdens of social cooperation. (Rawls 1971: 5)

Bailin et al. (1999b) claim that, if one considers what sorts of thinking an educator would take not to be critical thinking and what sorts to be critical thinking, one can conclude that educators typically understand critical thinking to have at least three features.

  • It is done for the purpose of making up one’s mind about what to believe or do.
  • The person engaging in the thinking is trying to fulfill standards of adequacy and accuracy appropriate to the thinking.
  • The thinking fulfills the relevant standards to some threshold level.

One could sum up the core concept that involves these three features by saying that critical thinking is careful goal-directed thinking. This core concept seems to apply to all the examples of critical thinking described in the previous section. As for the non-examples, their exclusion depends on construing careful thinking as excluding jumping immediately to conclusions, suspending judgment no matter how strong the evidence, reasoning from an unquestioned ideological or religious perspective, and routinely using an algorithm to answer a question.

If the core of critical thinking is careful goal-directed thinking, conceptions of it can vary according to its presumed scope, its presumed goal, one’s criteria and threshold for being careful, and the thinking component on which one focuses. As to its scope, some conceptions (e.g., Dewey 1910, 1933) restrict it to constructive thinking on the basis of one’s own observations and experiments, others (e.g., Ennis 1962; Fisher & Scriven 1997; Johnson 1992) to appraisal of the products of such thinking. Ennis (1991) and Bailin et al. (1999b) take it to cover both construction and appraisal. As to its goal, some conceptions restrict it to forming a judgment (Dewey 1910, 1933; Lipman 1987; Facione 1990a). Others allow for actions as well as beliefs as the end point of a process of critical thinking (Ennis 1991; Bailin et al. 1999b). As to the criteria and threshold for being careful, definitions vary in the term used to indicate that critical thinking satisfies certain norms: “intellectually disciplined” (Scriven & Paul 1987), “reasonable” (Ennis 1991), “skillful” (Lipman 1987), “skilled” (Fisher & Scriven 1997), “careful” (Bailin & Battersby 2009). Some definitions specify these norms, referring variously to “consideration of any belief or supposed form of knowledge in the light of the grounds that support it and the further conclusions to which it tends” (Dewey 1910, 1933); “the methods of logical inquiry and reasoning” (Glaser 1941); “conceptualizing, applying, analyzing, synthesizing, and/or evaluating information gathered from, or generated by, observation, experience, reflection, reasoning, or communication” (Scriven & Paul 1987); the requirement that “it is sensitive to context, relies on criteria, and is self-correcting” (Lipman 1987); “evidential, conceptual, methodological, criteriological, or contextual considerations” (Facione 1990a); and “plus-minus considerations of the product in terms of appropriate standards (or criteria)” (Johnson 1992). Stanovich and Stanovich (2010) propose to ground the concept of critical thinking in the concept of rationality, which they understand as combining epistemic rationality (fitting one’s beliefs to the world) and instrumental rationality (optimizing goal fulfillment); a critical thinker, in their view, is someone with “a propensity to override suboptimal responses from the autonomous mind” (2010: 227). These variant specifications of norms for critical thinking are not necessarily incompatible with one another, and in any case presuppose the core notion of thinking carefully. As to the thinking component singled out, some definitions focus on suspension of judgment during the thinking (Dewey 1910; McPeck 1981), others on inquiry while judgment is suspended (Bailin & Battersby 2009, 2021), others on the resulting judgment (Facione 1990a), and still others on responsiveness to reasons (Siegel 1988). Kuhn (2019) takes critical thinking to be more a dialogic practice of advancing and responding to arguments than an individual ability.

In educational contexts, a definition of critical thinking is a “programmatic definition” (Scheffler 1960: 19). It expresses a practical program for achieving an educational goal. For this purpose, a one-sentence formulaic definition is much less useful than articulation of a critical thinking process, with criteria and standards for the kinds of thinking that the process may involve. The real educational goal is recognition, adoption and implementation by students of those criteria and standards. That adoption and implementation in turn consists in acquiring the knowledge, abilities and dispositions of a critical thinker.

Conceptions of critical thinking generally do not include moral integrity as part of the concept. Dewey, for example, took critical thinking to be the ultimate intellectual goal of education, but distinguished it from the development of social cooperation among school children, which he took to be the central moral goal. Ennis (1996, 2011) added to his previous list of critical thinking dispositions a group of dispositions to care about the dignity and worth of every person, which he described as a “correlative” (1996) disposition without which critical thinking would be less valuable and perhaps harmful. An educational program that aimed at developing critical thinking but not the correlative disposition to care about the dignity and worth of every person, he asserted, “would be deficient and perhaps dangerous” (Ennis 1996: 172).

Dewey thought that education for reflective thinking would be of value to both the individual and society; recognition in educational practice of the kinship to the scientific attitude of children’s native curiosity, fertile imagination and love of experimental inquiry “would make for individual happiness and the reduction of social waste” (Dewey 1910: iii). Schools participating in the Eight-Year Study took development of the habit of reflective thinking and skill in solving problems as a means to leading young people to understand, appreciate and live the democratic way of life characteristic of the United States (Aikin 1942: 17–18, 81). Harvey Siegel (1988: 55–61) has offered four considerations in support of adopting critical thinking as an educational ideal. (1) Respect for persons requires that schools and teachers honour students’ demands for reasons and explanations, deal with students honestly, and recognize the need to confront students’ independent judgment; these requirements concern the manner in which teachers treat students. (2) Education has the task of preparing children to be successful adults, a task that requires development of their self-sufficiency. (3) Education should initiate children into the rational traditions in such fields as history, science and mathematics. (4) Education should prepare children to become democratic citizens, which requires reasoned procedures and critical talents and attitudes. To supplement these considerations, Siegel (1988: 62–90) responds to two objections: the ideology objection that adoption of any educational ideal requires a prior ideological commitment and the indoctrination objection that cultivation of critical thinking cannot escape being a form of indoctrination.

Despite the diversity of our 11 examples, one can recognize a common pattern. Dewey analyzed it as consisting of five phases:

  • suggestions , in which the mind leaps forward to a possible solution;
  • an intellectualization of the difficulty or perplexity into a problem to be solved, a question for which the answer must be sought;
  • the use of one suggestion after another as a leading idea, or hypothesis , to initiate and guide observation and other operations in collection of factual material;
  • the mental elaboration of the idea or supposition as an idea or supposition ( reasoning , in the sense on which reasoning is a part, not the whole, of inference); and
  • testing the hypothesis by overt or imaginative action. (Dewey 1933: 106–107; italics in original)

The process of reflective thinking consisting of these phases would be preceded by a perplexed, troubled or confused situation and followed by a cleared-up, unified, resolved situation (Dewey 1933: 106). The term ‘phases’ replaced the term ‘steps’ (Dewey 1910: 72), thus removing the earlier suggestion of an invariant sequence. Variants of the above analysis appeared in (Dewey 1916: 177) and (Dewey 1938: 101–119).

The variant formulations indicate the difficulty of giving a single logical analysis of such a varied process. The process of critical thinking may have a spiral pattern, with the problem being redefined in the light of obstacles to solving it as originally formulated. For example, the person in Transit might have concluded that getting to the appointment at the scheduled time was impossible and have reformulated the problem as that of rescheduling the appointment for a mutually convenient time. Further, defining a problem does not always follow after or lead immediately to an idea of a suggested solution. Nor should it do so, as Dewey himself recognized in describing the physician in Typhoid as avoiding any strong preference for this or that conclusion before getting further information (Dewey 1910: 85; 1933: 170). People with a hypothesis in mind, even one to which they have a very weak commitment, have a so-called “confirmation bias” (Nickerson 1998): they are likely to pay attention to evidence that confirms the hypothesis and to ignore evidence that counts against it or for some competing hypothesis. Detectives, intelligence agencies, and investigators of airplane accidents are well advised to gather relevant evidence systematically and to postpone even tentative adoption of an explanatory hypothesis until the collected evidence rules out with the appropriate degree of certainty all but one explanation. Dewey’s analysis of the critical thinking process can be faulted as well for requiring acceptance or rejection of a possible solution to a defined problem, with no allowance for deciding in the light of the available evidence to suspend judgment. Further, given the great variety of kinds of problems for which reflection is appropriate, there is likely to be variation in its component events. Perhaps the best way to conceptualize the critical thinking process is as a checklist whose component events can occur in a variety of orders, selectively, and more than once. These component events might include (1) noticing a difficulty, (2) defining the problem, (3) dividing the problem into manageable sub-problems, (4) formulating a variety of possible solutions to the problem or sub-problem, (5) determining what evidence is relevant to deciding among possible solutions to the problem or sub-problem, (6) devising a plan of systematic observation or experiment that will uncover the relevant evidence, (7) carrying out the plan of systematic observation or experimentation, (8) noting the results of the systematic observation or experiment, (9) gathering relevant testimony and information from others, (10) judging the credibility of testimony and information gathered from others, (11) drawing conclusions from gathered evidence and accepted testimony, and (12) accepting a solution that the evidence adequately supports (cf. Hitchcock 2017: 485).

Checklist conceptions of the process of critical thinking are open to the objection that they are too mechanical and procedural to fit the multi-dimensional and emotionally charged issues for which critical thinking is urgently needed (Paul 1984). For such issues, a more dialectical process is advocated, in which competing relevant world views are identified, their implications explored, and some sort of creative synthesis attempted.

If one considers the critical thinking process illustrated by the 11 examples, one can identify distinct kinds of mental acts and mental states that form part of it. To distinguish, label and briefly characterize these components is a useful preliminary to identifying abilities, skills, dispositions, attitudes, habits and the like that contribute causally to thinking critically. Identifying such abilities and habits is in turn a useful preliminary to setting educational goals. Setting the goals is in its turn a useful preliminary to designing strategies for helping learners to achieve the goals and to designing ways of measuring the extent to which learners have done so. Such measures provide both feedback to learners on their achievement and a basis for experimental research on the effectiveness of various strategies for educating people to think critically. Let us begin, then, by distinguishing the kinds of mental acts and mental events that can occur in a critical thinking process.

  • Observing : One notices something in one’s immediate environment (sudden cooling of temperature in Weather , bubbles forming outside a glass and then going inside in Bubbles , a moving blur in the distance in Blur , a rash in Rash ). Or one notes the results of an experiment or systematic observation (valuables missing in Disorder , no suction without air pressure in Suction pump )
  • Feeling : One feels puzzled or uncertain about something (how to get to an appointment on time in Transit , why the diamonds vary in spacing in Diamond ). One wants to resolve this perplexity. One feels satisfaction once one has worked out an answer (to take the subway express in Transit , diamonds closer when needed as a warning in Diamond ).
  • Wondering : One formulates a question to be addressed (why bubbles form outside a tumbler taken from hot water in Bubbles , how suction pumps work in Suction pump , what caused the rash in Rash ).
  • Imagining : One thinks of possible answers (bus or subway or elevated in Transit , flagpole or ornament or wireless communication aid or direction indicator in Ferryboat , allergic reaction or heat rash in Rash ).
  • Inferring : One works out what would be the case if a possible answer were assumed (valuables missing if there has been a burglary in Disorder , earlier start to the rash if it is an allergic reaction to a sulfa drug in Rash ). Or one draws a conclusion once sufficient relevant evidence is gathered (take the subway in Transit , burglary in Disorder , discontinue blood pressure medication and new cream in Rash ).
  • Knowledge : One uses stored knowledge of the subject-matter to generate possible answers or to infer what would be expected on the assumption of a particular answer (knowledge of a city’s public transit system in Transit , of the requirements for a flagpole in Ferryboat , of Boyle’s law in Bubbles , of allergic reactions in Rash ).
  • Experimenting : One designs and carries out an experiment or a systematic observation to find out whether the results deduced from a possible answer will occur (looking at the location of the flagpole in relation to the pilot’s position in Ferryboat , putting an ice cube on top of a tumbler taken from hot water in Bubbles , measuring the height to which a suction pump will draw water at different elevations in Suction pump , noticing the spacing of diamonds when movement to or from a diamond lane is allowed in Diamond ).
  • Consulting : One finds a source of information, gets the information from the source, and makes a judgment on whether to accept it. None of our 11 examples include searching for sources of information. In this respect they are unrepresentative, since most people nowadays have almost instant access to information relevant to answering any question, including many of those illustrated by the examples. However, Candidate includes the activities of extracting information from sources and evaluating its credibility.
  • Identifying and analyzing arguments : One notices an argument and works out its structure and content as a preliminary to evaluating its strength. This activity is central to Candidate . It is an important part of a critical thinking process in which one surveys arguments for various positions on an issue.
  • Judging : One makes a judgment on the basis of accumulated evidence and reasoning, such as the judgment in Ferryboat that the purpose of the pole is to provide direction to the pilot.
  • Deciding : One makes a decision on what to do or on what policy to adopt, as in the decision in Transit to take the subway.

By definition, a person who does something voluntarily is both willing and able to do that thing at that time. Both the willingness and the ability contribute causally to the person’s action, in the sense that the voluntary action would not occur if either (or both) of these were lacking. For example, suppose that one is standing with one’s arms at one’s sides and one voluntarily lifts one’s right arm to an extended horizontal position. One would not do so if one were unable to lift one’s arm, if for example one’s right side was paralyzed as the result of a stroke. Nor would one do so if one were unwilling to lift one’s arm, if for example one were participating in a street demonstration at which a white supremacist was urging the crowd to lift their right arm in a Nazi salute and one were unwilling to express support in this way for the racist Nazi ideology. The same analysis applies to a voluntary mental process of thinking critically. It requires both willingness and ability to think critically, including willingness and ability to perform each of the mental acts that compose the process and to coordinate those acts in a sequence that is directed at resolving the initiating perplexity.

Consider willingness first. We can identify causal contributors to willingness to think critically by considering factors that would cause a person who was able to think critically about an issue nevertheless not to do so (Hamby 2014). For each factor, the opposite condition thus contributes causally to willingness to think critically on a particular occasion. For example, people who habitually jump to conclusions without considering alternatives will not think critically about issues that arise, even if they have the required abilities. The contrary condition of willingness to suspend judgment is thus a causal contributor to thinking critically.

Now consider ability. In contrast to the ability to move one’s arm, which can be completely absent because a stroke has left the arm paralyzed, the ability to think critically is a developed ability, whose absence is not a complete absence of ability to think but absence of ability to think well. We can identify the ability to think well directly, in terms of the norms and standards for good thinking. In general, to be able do well the thinking activities that can be components of a critical thinking process, one needs to know the concepts and principles that characterize their good performance, to recognize in particular cases that the concepts and principles apply, and to apply them. The knowledge, recognition and application may be procedural rather than declarative. It may be domain-specific rather than widely applicable, and in either case may need subject-matter knowledge, sometimes of a deep kind.

Reflections of the sort illustrated by the previous two paragraphs have led scholars to identify the knowledge, abilities and dispositions of a “critical thinker”, i.e., someone who thinks critically whenever it is appropriate to do so. We turn now to these three types of causal contributors to thinking critically. We start with dispositions, since arguably these are the most powerful contributors to being a critical thinker, can be fostered at an early stage of a child’s development, and are susceptible to general improvement (Glaser 1941: 175)

8. Critical Thinking Dispositions

Educational researchers use the term ‘dispositions’ broadly for the habits of mind and attitudes that contribute causally to being a critical thinker. Some writers (e.g., Paul & Elder 2006; Hamby 2014; Bailin & Battersby 2016a) propose to use the term ‘virtues’ for this dimension of a critical thinker. The virtues in question, although they are virtues of character, concern the person’s ways of thinking rather than the person’s ways of behaving towards others. They are not moral virtues but intellectual virtues, of the sort articulated by Zagzebski (1996) and discussed by Turri, Alfano, and Greco (2017).

On a realistic conception, thinking dispositions or intellectual virtues are real properties of thinkers. They are general tendencies, propensities, or inclinations to think in particular ways in particular circumstances, and can be genuinely explanatory (Siegel 1999). Sceptics argue that there is no evidence for a specific mental basis for the habits of mind that contribute to thinking critically, and that it is pedagogically misleading to posit such a basis (Bailin et al. 1999a). Whatever their status, critical thinking dispositions need motivation for their initial formation in a child—motivation that may be external or internal. As children develop, the force of habit will gradually become important in sustaining the disposition (Nieto & Valenzuela 2012). Mere force of habit, however, is unlikely to sustain critical thinking dispositions. Critical thinkers must value and enjoy using their knowledge and abilities to think things through for themselves. They must be committed to, and lovers of, inquiry.

A person may have a critical thinking disposition with respect to only some kinds of issues. For example, one could be open-minded about scientific issues but not about religious issues. Similarly, one could be confident in one’s ability to reason about the theological implications of the existence of evil in the world but not in one’s ability to reason about the best design for a guided ballistic missile.

Facione (1990a: 25) divides “affective dispositions” of critical thinking into approaches to life and living in general and approaches to specific issues, questions or problems. Adapting this distinction, one can usefully divide critical thinking dispositions into initiating dispositions (those that contribute causally to starting to think critically about an issue) and internal dispositions (those that contribute causally to doing a good job of thinking critically once one has started). The two categories are not mutually exclusive. For example, open-mindedness, in the sense of willingness to consider alternative points of view to one’s own, is both an initiating and an internal disposition.

Using the strategy of considering factors that would block people with the ability to think critically from doing so, we can identify as initiating dispositions for thinking critically attentiveness, a habit of inquiry, self-confidence, courage, open-mindedness, willingness to suspend judgment, trust in reason, wanting evidence for one’s beliefs, and seeking the truth. We consider briefly what each of these dispositions amounts to, in each case citing sources that acknowledge them.

  • Attentiveness : One will not think critically if one fails to recognize an issue that needs to be thought through. For example, the pedestrian in Weather would not have looked up if he had not noticed that the air was suddenly cooler. To be a critical thinker, then, one needs to be habitually attentive to one’s surroundings, noticing not only what one senses but also sources of perplexity in messages received and in one’s own beliefs and attitudes (Facione 1990a: 25; Facione, Facione, & Giancarlo 2001).
  • Habit of inquiry : Inquiry is effortful, and one needs an internal push to engage in it. For example, the student in Bubbles could easily have stopped at idle wondering about the cause of the bubbles rather than reasoning to a hypothesis, then designing and executing an experiment to test it. Thus willingness to think critically needs mental energy and initiative. What can supply that energy? Love of inquiry, or perhaps just a habit of inquiry. Hamby (2015) has argued that willingness to inquire is the central critical thinking virtue, one that encompasses all the others. It is recognized as a critical thinking disposition by Dewey (1910: 29; 1933: 35), Glaser (1941: 5), Ennis (1987: 12; 1991: 8), Facione (1990a: 25), Bailin et al. (1999b: 294), Halpern (1998: 452), and Facione, Facione, & Giancarlo (2001).
  • Self-confidence : Lack of confidence in one’s abilities can block critical thinking. For example, if the woman in Rash lacked confidence in her ability to figure things out for herself, she might just have assumed that the rash on her chest was the allergic reaction to her medication against which the pharmacist had warned her. Thus willingness to think critically requires confidence in one’s ability to inquire (Facione 1990a: 25; Facione, Facione, & Giancarlo 2001).
  • Courage : Fear of thinking for oneself can stop one from doing it. Thus willingness to think critically requires intellectual courage (Paul & Elder 2006: 16).
  • Open-mindedness : A dogmatic attitude will impede thinking critically. For example, a person who adheres rigidly to a “pro-choice” position on the issue of the legal status of induced abortion is likely to be unwilling to consider seriously the issue of when in its development an unborn child acquires a moral right to life. Thus willingness to think critically requires open-mindedness, in the sense of a willingness to examine questions to which one already accepts an answer but which further evidence or reasoning might cause one to answer differently (Dewey 1933; Facione 1990a; Ennis 1991; Bailin et al. 1999b; Halpern 1998, Facione, Facione, & Giancarlo 2001). Paul (1981) emphasizes open-mindedness about alternative world-views, and recommends a dialectical approach to integrating such views as central to what he calls “strong sense” critical thinking. In three studies, Haran, Ritov, & Mellers (2013) found that actively open-minded thinking, including “the tendency to weigh new evidence against a favored belief, to spend sufficient time on a problem before giving up, and to consider carefully the opinions of others in forming one’s own”, led study participants to acquire information and thus to make accurate estimations.
  • Willingness to suspend judgment : Premature closure on an initial solution will block critical thinking. Thus willingness to think critically requires a willingness to suspend judgment while alternatives are explored (Facione 1990a; Ennis 1991; Halpern 1998).
  • Trust in reason : Since distrust in the processes of reasoned inquiry will dissuade one from engaging in it, trust in them is an initiating critical thinking disposition (Facione 1990a, 25; Bailin et al. 1999b: 294; Facione, Facione, & Giancarlo 2001; Paul & Elder 2006). In reaction to an allegedly exclusive emphasis on reason in critical thinking theory and pedagogy, Thayer-Bacon (2000) argues that intuition, imagination, and emotion have important roles to play in an adequate conception of critical thinking that she calls “constructive thinking”. From her point of view, critical thinking requires trust not only in reason but also in intuition, imagination, and emotion.
  • Seeking the truth : If one does not care about the truth but is content to stick with one’s initial bias on an issue, then one will not think critically about it. Seeking the truth is thus an initiating critical thinking disposition (Bailin et al. 1999b: 294; Facione, Facione, & Giancarlo 2001). A disposition to seek the truth is implicit in more specific critical thinking dispositions, such as trying to be well-informed, considering seriously points of view other than one’s own, looking for alternatives, suspending judgment when the evidence is insufficient, and adopting a position when the evidence supporting it is sufficient.

Some of the initiating dispositions, such as open-mindedness and willingness to suspend judgment, are also internal critical thinking dispositions, in the sense of mental habits or attitudes that contribute causally to doing a good job of critical thinking once one starts the process. But there are many other internal critical thinking dispositions. Some of them are parasitic on one’s conception of good thinking. For example, it is constitutive of good thinking about an issue to formulate the issue clearly and to maintain focus on it. For this purpose, one needs not only the corresponding ability but also the corresponding disposition. Ennis (1991: 8) describes it as the disposition “to determine and maintain focus on the conclusion or question”, Facione (1990a: 25) as “clarity in stating the question or concern”. Other internal dispositions are motivators to continue or adjust the critical thinking process, such as willingness to persist in a complex task and willingness to abandon nonproductive strategies in an attempt to self-correct (Halpern 1998: 452). For a list of identified internal critical thinking dispositions, see the Supplement on Internal Critical Thinking Dispositions .

Some theorists postulate skills, i.e., acquired abilities, as operative in critical thinking. It is not obvious, however, that a good mental act is the exercise of a generic acquired skill. Inferring an expected time of arrival, as in Transit , has some generic components but also uses non-generic subject-matter knowledge. Bailin et al. (1999a) argue against viewing critical thinking skills as generic and discrete, on the ground that skilled performance at a critical thinking task cannot be separated from knowledge of concepts and from domain-specific principles of good thinking. Talk of skills, they concede, is unproblematic if it means merely that a person with critical thinking skills is capable of intelligent performance.

Despite such scepticism, theorists of critical thinking have listed as general contributors to critical thinking what they variously call abilities (Glaser 1941; Ennis 1962, 1991), skills (Facione 1990a; Halpern 1998) or competencies (Fisher & Scriven 1997). Amalgamating these lists would produce a confusing and chaotic cornucopia of more than 50 possible educational objectives, with only partial overlap among them. It makes sense instead to try to understand the reasons for the multiplicity and diversity, and to make a selection according to one’s own reasons for singling out abilities to be developed in a critical thinking curriculum. Two reasons for diversity among lists of critical thinking abilities are the underlying conception of critical thinking and the envisaged educational level. Appraisal-only conceptions, for example, involve a different suite of abilities than constructive-only conceptions. Some lists, such as those in (Glaser 1941), are put forward as educational objectives for secondary school students, whereas others are proposed as objectives for college students (e.g., Facione 1990a).

The abilities described in the remaining paragraphs of this section emerge from reflection on the general abilities needed to do well the thinking activities identified in section 6 as components of the critical thinking process described in section 5 . The derivation of each collection of abilities is accompanied by citation of sources that list such abilities and of standardized tests that claim to test them.

Observational abilities : Careful and accurate observation sometimes requires specialist expertise and practice, as in the case of observing birds and observing accident scenes. However, there are general abilities of noticing what one’s senses are picking up from one’s environment and of being able to articulate clearly and accurately to oneself and others what one has observed. It helps in exercising them to be able to recognize and take into account factors that make one’s observation less trustworthy, such as prior framing of the situation, inadequate time, deficient senses, poor observation conditions, and the like. It helps as well to be skilled at taking steps to make one’s observation more trustworthy, such as moving closer to get a better look, measuring something three times and taking the average, and checking what one thinks one is observing with someone else who is in a good position to observe it. It also helps to be skilled at recognizing respects in which one’s report of one’s observation involves inference rather than direct observation, so that one can then consider whether the inference is justified. These abilities come into play as well when one thinks about whether and with what degree of confidence to accept an observation report, for example in the study of history or in a criminal investigation or in assessing news reports. Observational abilities show up in some lists of critical thinking abilities (Ennis 1962: 90; Facione 1990a: 16; Ennis 1991: 9). There are items testing a person’s ability to judge the credibility of observation reports in the Cornell Critical Thinking Tests, Levels X and Z (Ennis & Millman 1971; Ennis, Millman, & Tomko 1985, 2005). Norris and King (1983, 1985, 1990a, 1990b) is a test of ability to appraise observation reports.

Emotional abilities : The emotions that drive a critical thinking process are perplexity or puzzlement, a wish to resolve it, and satisfaction at achieving the desired resolution. Children experience these emotions at an early age, without being trained to do so. Education that takes critical thinking as a goal needs only to channel these emotions and to make sure not to stifle them. Collaborative critical thinking benefits from ability to recognize one’s own and others’ emotional commitments and reactions.

Questioning abilities : A critical thinking process needs transformation of an inchoate sense of perplexity into a clear question. Formulating a question well requires not building in questionable assumptions, not prejudging the issue, and using language that in context is unambiguous and precise enough (Ennis 1962: 97; 1991: 9).

Imaginative abilities : Thinking directed at finding the correct causal explanation of a general phenomenon or particular event requires an ability to imagine possible explanations. Thinking about what policy or plan of action to adopt requires generation of options and consideration of possible consequences of each option. Domain knowledge is required for such creative activity, but a general ability to imagine alternatives is helpful and can be nurtured so as to become easier, quicker, more extensive, and deeper (Dewey 1910: 34–39; 1933: 40–47). Facione (1990a) and Halpern (1998) include the ability to imagine alternatives as a critical thinking ability.

Inferential abilities : The ability to draw conclusions from given information, and to recognize with what degree of certainty one’s own or others’ conclusions follow, is universally recognized as a general critical thinking ability. All 11 examples in section 2 of this article include inferences, some from hypotheses or options (as in Transit , Ferryboat and Disorder ), others from something observed (as in Weather and Rash ). None of these inferences is formally valid. Rather, they are licensed by general, sometimes qualified substantive rules of inference (Toulmin 1958) that rest on domain knowledge—that a bus trip takes about the same time in each direction, that the terminal of a wireless telegraph would be located on the highest possible place, that sudden cooling is often followed by rain, that an allergic reaction to a sulfa drug generally shows up soon after one starts taking it. It is a matter of controversy to what extent the specialized ability to deduce conclusions from premisses using formal rules of inference is needed for critical thinking. Dewey (1933) locates logical forms in setting out the products of reflection rather than in the process of reflection. Ennis (1981a), on the other hand, maintains that a liberally-educated person should have the following abilities: to translate natural-language statements into statements using the standard logical operators, to use appropriately the language of necessary and sufficient conditions, to deal with argument forms and arguments containing symbols, to determine whether in virtue of an argument’s form its conclusion follows necessarily from its premisses, to reason with logically complex propositions, and to apply the rules and procedures of deductive logic. Inferential abilities are recognized as critical thinking abilities by Glaser (1941: 6), Facione (1990a: 9), Ennis (1991: 9), Fisher & Scriven (1997: 99, 111), and Halpern (1998: 452). Items testing inferential abilities constitute two of the five subtests of the Watson Glaser Critical Thinking Appraisal (Watson & Glaser 1980a, 1980b, 1994), two of the four sections in the Cornell Critical Thinking Test Level X (Ennis & Millman 1971; Ennis, Millman, & Tomko 1985, 2005), three of the seven sections in the Cornell Critical Thinking Test Level Z (Ennis & Millman 1971; Ennis, Millman, & Tomko 1985, 2005), 11 of the 34 items on Forms A and B of the California Critical Thinking Skills Test (Facione 1990b, 1992), and a high but variable proportion of the 25 selected-response questions in the Collegiate Learning Assessment (Council for Aid to Education 2017).

Experimenting abilities : Knowing how to design and execute an experiment is important not just in scientific research but also in everyday life, as in Rash . Dewey devoted a whole chapter of his How We Think (1910: 145–156; 1933: 190–202) to the superiority of experimentation over observation in advancing knowledge. Experimenting abilities come into play at one remove in appraising reports of scientific studies. Skill in designing and executing experiments includes the acknowledged abilities to appraise evidence (Glaser 1941: 6), to carry out experiments and to apply appropriate statistical inference techniques (Facione 1990a: 9), to judge inductions to an explanatory hypothesis (Ennis 1991: 9), and to recognize the need for an adequately large sample size (Halpern 1998). The Cornell Critical Thinking Test Level Z (Ennis & Millman 1971; Ennis, Millman, & Tomko 1985, 2005) includes four items (out of 52) on experimental design. The Collegiate Learning Assessment (Council for Aid to Education 2017) makes room for appraisal of study design in both its performance task and its selected-response questions.

Consulting abilities : Skill at consulting sources of information comes into play when one seeks information to help resolve a problem, as in Candidate . Ability to find and appraise information includes ability to gather and marshal pertinent information (Glaser 1941: 6), to judge whether a statement made by an alleged authority is acceptable (Ennis 1962: 84), to plan a search for desired information (Facione 1990a: 9), and to judge the credibility of a source (Ennis 1991: 9). Ability to judge the credibility of statements is tested by 24 items (out of 76) in the Cornell Critical Thinking Test Level X (Ennis & Millman 1971; Ennis, Millman, & Tomko 1985, 2005) and by four items (out of 52) in the Cornell Critical Thinking Test Level Z (Ennis & Millman 1971; Ennis, Millman, & Tomko 1985, 2005). The College Learning Assessment’s performance task requires evaluation of whether information in documents is credible or unreliable (Council for Aid to Education 2017).

Argument analysis abilities : The ability to identify and analyze arguments contributes to the process of surveying arguments on an issue in order to form one’s own reasoned judgment, as in Candidate . The ability to detect and analyze arguments is recognized as a critical thinking skill by Facione (1990a: 7–8), Ennis (1991: 9) and Halpern (1998). Five items (out of 34) on the California Critical Thinking Skills Test (Facione 1990b, 1992) test skill at argument analysis. The College Learning Assessment (Council for Aid to Education 2017) incorporates argument analysis in its selected-response tests of critical reading and evaluation and of critiquing an argument.

Judging skills and deciding skills : Skill at judging and deciding is skill at recognizing what judgment or decision the available evidence and argument supports, and with what degree of confidence. It is thus a component of the inferential skills already discussed.

Lists and tests of critical thinking abilities often include two more abilities: identifying assumptions and constructing and evaluating definitions.

In addition to dispositions and abilities, critical thinking needs knowledge: of critical thinking concepts, of critical thinking principles, and of the subject-matter of the thinking.

We can derive a short list of concepts whose understanding contributes to critical thinking from the critical thinking abilities described in the preceding section. Observational abilities require an understanding of the difference between observation and inference. Questioning abilities require an understanding of the concepts of ambiguity and vagueness. Inferential abilities require an understanding of the difference between conclusive and defeasible inference (traditionally, between deduction and induction), as well as of the difference between necessary and sufficient conditions. Experimenting abilities require an understanding of the concepts of hypothesis, null hypothesis, assumption and prediction, as well as of the concept of statistical significance and of its difference from importance. They also require an understanding of the difference between an experiment and an observational study, and in particular of the difference between a randomized controlled trial, a prospective correlational study and a retrospective (case-control) study. Argument analysis abilities require an understanding of the concepts of argument, premiss, assumption, conclusion and counter-consideration. Additional critical thinking concepts are proposed by Bailin et al. (1999b: 293), Fisher & Scriven (1997: 105–106), Black (2012), and Blair (2021).

According to Glaser (1941: 25), ability to think critically requires knowledge of the methods of logical inquiry and reasoning. If we review the list of abilities in the preceding section, however, we can see that some of them can be acquired and exercised merely through practice, possibly guided in an educational setting, followed by feedback. Searching intelligently for a causal explanation of some phenomenon or event requires that one consider a full range of possible causal contributors, but it seems more important that one implements this principle in one’s practice than that one is able to articulate it. What is important is “operational knowledge” of the standards and principles of good thinking (Bailin et al. 1999b: 291–293). But the development of such critical thinking abilities as designing an experiment or constructing an operational definition can benefit from learning their underlying theory. Further, explicit knowledge of quirks of human thinking seems useful as a cautionary guide. Human memory is not just fallible about details, as people learn from their own experiences of misremembering, but is so malleable that a detailed, clear and vivid recollection of an event can be a total fabrication (Loftus 2017). People seek or interpret evidence in ways that are partial to their existing beliefs and expectations, often unconscious of their “confirmation bias” (Nickerson 1998). Not only are people subject to this and other cognitive biases (Kahneman 2011), of which they are typically unaware, but it may be counter-productive for one to make oneself aware of them and try consciously to counteract them or to counteract social biases such as racial or sexual stereotypes (Kenyon & Beaulac 2014). It is helpful to be aware of these facts and of the superior effectiveness of blocking the operation of biases—for example, by making an immediate record of one’s observations, refraining from forming a preliminary explanatory hypothesis, blind refereeing, double-blind randomized trials, and blind grading of students’ work. It is also helpful to be aware of the prevalence of “noise” (unwanted unsystematic variability of judgments), of how to detect noise (through a noise audit), and of how to reduce noise: make accuracy the goal, think statistically, break a process of arriving at a judgment into independent tasks, resist premature intuitions, in a group get independent judgments first, favour comparative judgments and scales (Kahneman, Sibony, & Sunstein 2021). It is helpful as well to be aware of the concept of “bounded rationality” in decision-making and of the related distinction between “satisficing” and optimizing (Simon 1956; Gigerenzer 2001).

Critical thinking about an issue requires substantive knowledge of the domain to which the issue belongs. Critical thinking abilities are not a magic elixir that can be applied to any issue whatever by somebody who has no knowledge of the facts relevant to exploring that issue. For example, the student in Bubbles needed to know that gases do not penetrate solid objects like a glass, that air expands when heated, that the volume of an enclosed gas varies directly with its temperature and inversely with its pressure, and that hot objects will spontaneously cool down to the ambient temperature of their surroundings unless kept hot by insulation or a source of heat. Critical thinkers thus need a rich fund of subject-matter knowledge relevant to the variety of situations they encounter. This fact is recognized in the inclusion among critical thinking dispositions of a concern to become and remain generally well informed.

Experimental educational interventions, with control groups, have shown that education can improve critical thinking skills and dispositions, as measured by standardized tests. For information about these tests, see the Supplement on Assessment .

What educational methods are most effective at developing the dispositions, abilities and knowledge of a critical thinker? In a comprehensive meta-analysis of experimental and quasi-experimental studies of strategies for teaching students to think critically, Abrami et al. (2015) found that dialogue, anchored instruction, and mentoring each increased the effectiveness of the educational intervention, and that they were most effective when combined. They also found that in these studies a combination of separate instruction in critical thinking with subject-matter instruction in which students are encouraged to think critically was more effective than either by itself. However, the difference was not statistically significant; that is, it might have arisen by chance.

Most of these studies lack the longitudinal follow-up required to determine whether the observed differential improvements in critical thinking abilities or dispositions continue over time, for example until high school or college graduation. For details on studies of methods of developing critical thinking skills and dispositions, see the Supplement on Educational Methods .

12. Controversies

Scholars have denied the generalizability of critical thinking abilities across subject domains, have alleged bias in critical thinking theory and pedagogy, and have investigated the relationship of critical thinking to other kinds of thinking.

McPeck (1981) attacked the thinking skills movement of the 1970s, including the critical thinking movement. He argued that there are no general thinking skills, since thinking is always thinking about some subject-matter. It is futile, he claimed, for schools and colleges to teach thinking as if it were a separate subject. Rather, teachers should lead their pupils to become autonomous thinkers by teaching school subjects in a way that brings out their cognitive structure and that encourages and rewards discussion and argument. As some of his critics (e.g., Paul 1985; Siegel 1985) pointed out, McPeck’s central argument needs elaboration, since it has obvious counter-examples in writing and speaking, for which (up to a certain level of complexity) there are teachable general abilities even though they are always about some subject-matter. To make his argument convincing, McPeck needs to explain how thinking differs from writing and speaking in a way that does not permit useful abstraction of its components from the subject-matters with which it deals. He has not done so. Nevertheless, his position that the dispositions and abilities of a critical thinker are best developed in the context of subject-matter instruction is shared by many theorists of critical thinking, including Dewey (1910, 1933), Glaser (1941), Passmore (1980), Weinstein (1990), Bailin et al. (1999b), and Willingham (2019).

McPeck’s challenge prompted reflection on the extent to which critical thinking is subject-specific. McPeck argued for a strong subject-specificity thesis, according to which it is a conceptual truth that all critical thinking abilities are specific to a subject. (He did not however extend his subject-specificity thesis to critical thinking dispositions. In particular, he took the disposition to suspend judgment in situations of cognitive dissonance to be a general disposition.) Conceptual subject-specificity is subject to obvious counter-examples, such as the general ability to recognize confusion of necessary and sufficient conditions. A more modest thesis, also endorsed by McPeck, is epistemological subject-specificity, according to which the norms of good thinking vary from one field to another. Epistemological subject-specificity clearly holds to a certain extent; for example, the principles in accordance with which one solves a differential equation are quite different from the principles in accordance with which one determines whether a painting is a genuine Picasso. But the thesis suffers, as Ennis (1989) points out, from vagueness of the concept of a field or subject and from the obvious existence of inter-field principles, however broadly the concept of a field is construed. For example, the principles of hypothetico-deductive reasoning hold for all the varied fields in which such reasoning occurs. A third kind of subject-specificity is empirical subject-specificity, according to which as a matter of empirically observable fact a person with the abilities and dispositions of a critical thinker in one area of investigation will not necessarily have them in another area of investigation.

The thesis of empirical subject-specificity raises the general problem of transfer. If critical thinking abilities and dispositions have to be developed independently in each school subject, how are they of any use in dealing with the problems of everyday life and the political and social issues of contemporary society, most of which do not fit into the framework of a traditional school subject? Proponents of empirical subject-specificity tend to argue that transfer is more likely to occur if there is critical thinking instruction in a variety of domains, with explicit attention to dispositions and abilities that cut across domains. But evidence for this claim is scanty. There is a need for well-designed empirical studies that investigate the conditions that make transfer more likely.

It is common ground in debates about the generality or subject-specificity of critical thinking dispositions and abilities that critical thinking about any topic requires background knowledge about the topic. For example, the most sophisticated understanding of the principles of hypothetico-deductive reasoning is of no help unless accompanied by some knowledge of what might be plausible explanations of some phenomenon under investigation.

Critics have objected to bias in the theory, pedagogy and practice of critical thinking. Commentators (e.g., Alston 1995; Ennis 1998) have noted that anyone who takes a position has a bias in the neutral sense of being inclined in one direction rather than others. The critics, however, are objecting to bias in the pejorative sense of an unjustified favoring of certain ways of knowing over others, frequently alleging that the unjustly favoured ways are those of a dominant sex or culture (Bailin 1995). These ways favour:

  • reinforcement of egocentric and sociocentric biases over dialectical engagement with opposing world-views (Paul 1981, 1984; Warren 1998)
  • distancing from the object of inquiry over closeness to it (Martin 1992; Thayer-Bacon 1992)
  • indifference to the situation of others over care for them (Martin 1992)
  • orientation to thought over orientation to action (Martin 1992)
  • being reasonable over caring to understand people’s ideas (Thayer-Bacon 1993)
  • being neutral and objective over being embodied and situated (Thayer-Bacon 1995a)
  • doubting over believing (Thayer-Bacon 1995b)
  • reason over emotion, imagination and intuition (Thayer-Bacon 2000)
  • solitary thinking over collaborative thinking (Thayer-Bacon 2000)
  • written and spoken assignments over other forms of expression (Alston 2001)
  • attention to written and spoken communications over attention to human problems (Alston 2001)
  • winning debates in the public sphere over making and understanding meaning (Alston 2001)

A common thread in this smorgasbord of accusations is dissatisfaction with focusing on the logical analysis and evaluation of reasoning and arguments. While these authors acknowledge that such analysis and evaluation is part of critical thinking and should be part of its conceptualization and pedagogy, they insist that it is only a part. Paul (1981), for example, bemoans the tendency of atomistic teaching of methods of analyzing and evaluating arguments to turn students into more able sophists, adept at finding fault with positions and arguments with which they disagree but even more entrenched in the egocentric and sociocentric biases with which they began. Martin (1992) and Thayer-Bacon (1992) cite with approval the self-reported intimacy with their subject-matter of leading researchers in biology and medicine, an intimacy that conflicts with the distancing allegedly recommended in standard conceptions and pedagogy of critical thinking. Thayer-Bacon (2000) contrasts the embodied and socially embedded learning of her elementary school students in a Montessori school, who used their imagination, intuition and emotions as well as their reason, with conceptions of critical thinking as

thinking that is used to critique arguments, offer justifications, and make judgments about what are the good reasons, or the right answers. (Thayer-Bacon 2000: 127–128)

Alston (2001) reports that her students in a women’s studies class were able to see the flaws in the Cinderella myth that pervades much romantic fiction but in their own romantic relationships still acted as if all failures were the woman’s fault and still accepted the notions of love at first sight and living happily ever after. Students, she writes, should

be able to connect their intellectual critique to a more affective, somatic, and ethical account of making risky choices that have sexist, racist, classist, familial, sexual, or other consequences for themselves and those both near and far… critical thinking that reads arguments, texts, or practices merely on the surface without connections to feeling/desiring/doing or action lacks an ethical depth that should infuse the difference between mere cognitive activity and something we want to call critical thinking. (Alston 2001: 34)

Some critics portray such biases as unfair to women. Thayer-Bacon (1992), for example, has charged modern critical thinking theory with being sexist, on the ground that it separates the self from the object and causes one to lose touch with one’s inner voice, and thus stigmatizes women, who (she asserts) link self to object and listen to their inner voice. Her charge does not imply that women as a group are on average less able than men to analyze and evaluate arguments. Facione (1990c) found no difference by sex in performance on his California Critical Thinking Skills Test. Kuhn (1991: 280–281) found no difference by sex in either the disposition or the competence to engage in argumentative thinking.

The critics propose a variety of remedies for the biases that they allege. In general, they do not propose to eliminate or downplay critical thinking as an educational goal. Rather, they propose to conceptualize critical thinking differently and to change its pedagogy accordingly. Their pedagogical proposals arise logically from their objections. They can be summarized as follows:

  • Focus on argument networks with dialectical exchanges reflecting contesting points of view rather than on atomic arguments, so as to develop “strong sense” critical thinking that transcends egocentric and sociocentric biases (Paul 1981, 1984).
  • Foster closeness to the subject-matter and feeling connected to others in order to inform a humane democracy (Martin 1992).
  • Develop “constructive thinking” as a social activity in a community of physically embodied and socially embedded inquirers with personal voices who value not only reason but also imagination, intuition and emotion (Thayer-Bacon 2000).
  • In developing critical thinking in school subjects, treat as important neither skills nor dispositions but opening worlds of meaning (Alston 2001).
  • Attend to the development of critical thinking dispositions as well as skills, and adopt the “critical pedagogy” practised and advocated by Freire (1968 [1970]) and hooks (1994) (Dalgleish, Girard, & Davies 2017).

A common thread in these proposals is treatment of critical thinking as a social, interactive, personally engaged activity like that of a quilting bee or a barn-raising (Thayer-Bacon 2000) rather than as an individual, solitary, distanced activity symbolized by Rodin’s The Thinker . One can get a vivid description of education with the former type of goal from the writings of bell hooks (1994, 2010). Critical thinking for her is open-minded dialectical exchange across opposing standpoints and from multiple perspectives, a conception similar to Paul’s “strong sense” critical thinking (Paul 1981). She abandons the structure of domination in the traditional classroom. In an introductory course on black women writers, for example, she assigns students to write an autobiographical paragraph about an early racial memory, then to read it aloud as the others listen, thus affirming the uniqueness and value of each voice and creating a communal awareness of the diversity of the group’s experiences (hooks 1994: 84). Her “engaged pedagogy” is thus similar to the “freedom under guidance” implemented in John Dewey’s Laboratory School of Chicago in the late 1890s and early 1900s. It incorporates the dialogue, anchored instruction, and mentoring that Abrami (2015) found to be most effective in improving critical thinking skills and dispositions.

What is the relationship of critical thinking to problem solving, decision-making, higher-order thinking, creative thinking, and other recognized types of thinking? One’s answer to this question obviously depends on how one defines the terms used in the question. If critical thinking is conceived broadly to cover any careful thinking about any topic for any purpose, then problem solving and decision making will be kinds of critical thinking, if they are done carefully. Historically, ‘critical thinking’ and ‘problem solving’ were two names for the same thing. If critical thinking is conceived more narrowly as consisting solely of appraisal of intellectual products, then it will be disjoint with problem solving and decision making, which are constructive.

Bloom’s taxonomy of educational objectives used the phrase “intellectual abilities and skills” for what had been labeled “critical thinking” by some, “reflective thinking” by Dewey and others, and “problem solving” by still others (Bloom et al. 1956: 38). Thus, the so-called “higher-order thinking skills” at the taxonomy’s top levels of analysis, synthesis and evaluation are just critical thinking skills, although they do not come with general criteria for their assessment (Ennis 1981b). The revised version of Bloom’s taxonomy (Anderson et al. 2001) likewise treats critical thinking as cutting across those types of cognitive process that involve more than remembering (Anderson et al. 2001: 269–270). For details, see the Supplement on History .

As to creative thinking, it overlaps with critical thinking (Bailin 1987, 1988). Thinking about the explanation of some phenomenon or event, as in Ferryboat , requires creative imagination in constructing plausible explanatory hypotheses. Likewise, thinking about a policy question, as in Candidate , requires creativity in coming up with options. Conversely, creativity in any field needs to be balanced by critical appraisal of the draft painting or novel or mathematical theory.

  • Abrami, Philip C., Robert M. Bernard, Eugene Borokhovski, David I. Waddington, C. Anne Wade, and Tonje Person, 2015, “Strategies for Teaching Students to Think Critically: A Meta-analysis”, Review of Educational Research , 85(2): 275–314. doi:10.3102/0034654314551063
  • Aikin, Wilford M., 1942, The Story of the Eight-year Study, with Conclusions and Recommendations , Volume I of Adventure in American Education , New York and London: Harper & Brothers. [ Aikin 1942 available online ]
  • Alston, Kal, 1995, “Begging the Question: Is Critical Thinking Biased?”, Educational Theory , 45(2): 225–233. doi:10.1111/j.1741-5446.1995.00225.x
  • –––, 2001, “Re/Thinking Critical Thinking: The Seductions of Everyday Life”, Studies in Philosophy and Education , 20(1): 27–40. doi:10.1023/A:1005247128053
  • American Educational Research Association, 2014, Standards for Educational and Psychological Testing / American Educational Research Association, American Psychological Association, National Council on Measurement in Education , Washington, DC: American Educational Research Association.
  • Anderson, Lorin W., David R. Krathwohl, Peter W. Airiasian, Kathleen A. Cruikshank, Richard E. Mayer, Paul R. Pintrich, James Raths, and Merlin C. Wittrock, 2001, A Taxonomy for Learning, Teaching and Assessing: A Revision of Bloom’s Taxonomy of Educational Objectives , New York: Longman, complete edition.
  • Bailin, Sharon, 1987, “Critical and Creative Thinking”, Informal Logic , 9(1): 23–30. [ Bailin 1987 available online ]
  • –––, 1988, Achieving Extraordinary Ends: An Essay on Creativity , Dordrecht: Kluwer. doi:10.1007/978-94-009-2780-3
  • –––, 1995, “Is Critical Thinking Biased? Clarifications and Implications”, Educational Theory , 45(2): 191–197. doi:10.1111/j.1741-5446.1995.00191.x
  • Bailin, Sharon and Mark Battersby, 2009, “Inquiry: A Dialectical Approach to Teaching Critical Thinking”, in Juho Ritola (ed.), Argument Cultures: Proceedings of OSSA 09 , CD-ROM (pp. 1–10), Windsor, ON: OSSA. [ Bailin & Battersby 2009 available online ]
  • –––, 2016a, “Fostering the Virtues of Inquiry”, Topoi , 35(2): 367–374. doi:10.1007/s11245-015-9307-6
  • –––, 2016b, Reason in the Balance: An Inquiry Approach to Critical Thinking , Indianapolis: Hackett, 2nd edition.
  • –––, 2021, “Inquiry: Teaching for Reasoned Judgment”, in Daniel Fasko, Jr. and Frank Fair (eds.), Critical Thinking and Reasoning: Theory, Development, Instruction, and Assessment , Leiden: Brill, pp. 31–46. doi: 10.1163/9789004444591_003
  • Bailin, Sharon, Roland Case, Jerrold R. Coombs, and Leroi B. Daniels, 1999a, “Common Misconceptions of Critical Thinking”, Journal of Curriculum Studies , 31(3): 269–283. doi:10.1080/002202799183124
  • –––, 1999b, “Conceptualizing Critical Thinking”, Journal of Curriculum Studies , 31(3): 285–302. doi:10.1080/002202799183133
  • Blair, J. Anthony, 2021, Studies in Critical Thinking , Windsor, ON: Windsor Studies in Argumentation, 2nd edition. [Available online at https://windsor.scholarsportal.info/omp/index.php/wsia/catalog/book/106]
  • Berman, Alan M., Seth J. Schwartz, William M. Kurtines, and Steven L. Berman, 2001, “The Process of Exploration in Identity Formation: The Role of Style and Competence”, Journal of Adolescence , 24(4): 513–528. doi:10.1006/jado.2001.0386
  • Black, Beth (ed.), 2012, An A to Z of Critical Thinking , London: Continuum International Publishing Group.
  • Bloom, Benjamin Samuel, Max D. Engelhart, Edward J. Furst, Walter H. Hill, and David R. Krathwohl, 1956, Taxonomy of Educational Objectives. Handbook I: Cognitive Domain , New York: David McKay.
  • Boardman, Frank, Nancy M. Cavender, and Howard Kahane, 2018, Logic and Contemporary Rhetoric: The Use of Reason in Everyday Life , Boston: Cengage, 13th edition.
  • Browne, M. Neil and Stuart M. Keeley, 2018, Asking the Right Questions: A Guide to Critical Thinking , Hoboken, NJ: Pearson, 12th edition.
  • Center for Assessment & Improvement of Learning, 2017, Critical Thinking Assessment Test , Cookeville, TN: Tennessee Technological University.
  • Cleghorn, Paul. 2021. “Critical Thinking in the Elementary School: Practical Guidance for Building a Culture of Thinking”, in Daniel Fasko, Jr. and Frank Fair (eds.), Critical Thinking and Reasoning: Theory, Development, Instruction, and Assessmen t, Leiden: Brill, pp. 150–167. doi: 10.1163/9789004444591_010
  • Cohen, Jacob, 1988, Statistical Power Analysis for the Behavioral Sciences , Hillsdale, NJ: Lawrence Erlbaum Associates, 2nd edition.
  • College Board, 1983, Academic Preparation for College. What Students Need to Know and Be Able to Do , New York: College Entrance Examination Board, ERIC document ED232517.
  • Commission on the Relation of School and College of the Progressive Education Association, 1943, Thirty Schools Tell Their Story , Volume V of Adventure in American Education , New York and London: Harper & Brothers.
  • Council for Aid to Education, 2017, CLA+ Student Guide . Available at http://cae.org/images/uploads/pdf/CLA_Student_Guide_Institution.pdf ; last accessed 2022 07 16.
  • Dalgleish, Adam, Patrick Girard, and Maree Davies, 2017, “Critical Thinking, Bias and Feminist Philosophy: Building a Better Framework through Collaboration”, Informal Logic , 37(4): 351–369. [ Dalgleish et al. available online ]
  • Dewey, John, 1910, How We Think , Boston: D.C. Heath. [ Dewey 1910 available online ]
  • –––, 1916, Democracy and Education: An Introduction to the Philosophy of Education , New York: Macmillan.
  • –––, 1933, How We Think: A Restatement of the Relation of Reflective Thinking to the Educative Process , Lexington, MA: D.C. Heath.
  • –––, 1936, “The Theory of the Chicago Experiment”, Appendix II of Mayhew & Edwards 1936: 463–477.
  • –––, 1938, Logic: The Theory of Inquiry , New York: Henry Holt and Company.
  • Dominguez, Caroline (coord.), 2018a, A European Collection of the Critical Thinking Skills and Dispositions Needed in Different Professional Fields for the 21st Century , Vila Real, Portugal: UTAD. Available at http://bit.ly/CRITHINKEDUO1 ; last accessed 2022 07 16.
  • ––– (coord.), 2018b, A European Review on Critical Thinking Educational Practices in Higher Education Institutions , Vila Real: UTAD. Available at http://bit.ly/CRITHINKEDUO2 ; last accessed 2022 07 16.
  • ––– (coord.), 2018c, The CRITHINKEDU European Course on Critical Thinking Education for University Teachers: From Conception to Delivery , Vila Real: UTAD. Available at http:/bit.ly/CRITHINKEDU03; last accessed 2022 07 16.
  • Dominguez Caroline and Rita Payan-Carreira (eds.), 2019, Promoting Critical Thinking in European Higher Education Institutions: Towards an Educational Protocol , Vila Real: UTAD. Available at http:/bit.ly/CRITHINKEDU04; last accessed 2022 07 16.
  • Ennis, Robert H., 1958, “An Appraisal of the Watson-Glaser Critical Thinking Appraisal”, The Journal of Educational Research , 52(4): 155–158. doi:10.1080/00220671.1958.10882558
  • –––, 1962, “A Concept of Critical Thinking: A Proposed Basis for Research on the Teaching and Evaluation of Critical Thinking Ability”, Harvard Educational Review , 32(1): 81–111.
  • –––, 1981a, “A Conception of Deductive Logical Competence”, Teaching Philosophy , 4(3/4): 337–385. doi:10.5840/teachphil198143/429
  • –––, 1981b, “Eight Fallacies in Bloom’s Taxonomy”, in C. J. B. Macmillan (ed.), Philosophy of Education 1980: Proceedings of the Thirty-seventh Annual Meeting of the Philosophy of Education Society , Bloomington, IL: Philosophy of Education Society, pp. 269–273.
  • –––, 1984, “Problems in Testing Informal Logic, Critical Thinking, Reasoning Ability”, Informal Logic , 6(1): 3–9. [ Ennis 1984 available online ]
  • –––, 1987, “A Taxonomy of Critical Thinking Dispositions and Abilities”, in Joan Boykoff Baron and Robert J. Sternberg (eds.), Teaching Thinking Skills: Theory and Practice , New York: W. H. Freeman, pp. 9–26.
  • –––, 1989, “Critical Thinking and Subject Specificity: Clarification and Needed Research”, Educational Researcher , 18(3): 4–10. doi:10.3102/0013189X018003004
  • –––, 1991, “Critical Thinking: A Streamlined Conception”, Teaching Philosophy , 14(1): 5–24. doi:10.5840/teachphil19911412
  • –––, 1996, “Critical Thinking Dispositions: Their Nature and Assessability”, Informal Logic , 18(2–3): 165–182. [ Ennis 1996 available online ]
  • –––, 1998, “Is Critical Thinking Culturally Biased?”, Teaching Philosophy , 21(1): 15–33. doi:10.5840/teachphil19982113
  • –––, 2011, “Critical Thinking: Reflection and Perspective Part I”, Inquiry: Critical Thinking across the Disciplines , 26(1): 4–18. doi:10.5840/inquiryctnews20112613
  • –––, 2013, “Critical Thinking across the Curriculum: The Wisdom CTAC Program”, Inquiry: Critical Thinking across the Disciplines , 28(2): 25–45. doi:10.5840/inquiryct20132828
  • –––, 2016, “Definition: A Three-Dimensional Analysis with Bearing on Key Concepts”, in Patrick Bondy and Laura Benacquista (eds.), Argumentation, Objectivity, and Bias: Proceedings of the 11th International Conference of the Ontario Society for the Study of Argumentation (OSSA), 18–21 May 2016 , Windsor, ON: OSSA, pp. 1–19. Available at http://scholar.uwindsor.ca/ossaarchive/OSSA11/papersandcommentaries/105 ; last accessed 2022 07 16.
  • –––, 2018, “Critical Thinking Across the Curriculum: A Vision”, Topoi , 37(1): 165–184. doi:10.1007/s11245-016-9401-4
  • Ennis, Robert H., and Jason Millman, 1971, Manual for Cornell Critical Thinking Test, Level X, and Cornell Critical Thinking Test, Level Z , Urbana, IL: Critical Thinking Project, University of Illinois.
  • Ennis, Robert H., Jason Millman, and Thomas Norbert Tomko, 1985, Cornell Critical Thinking Tests Level X & Level Z: Manual , Pacific Grove, CA: Midwest Publication, 3rd edition.
  • –––, 2005, Cornell Critical Thinking Tests Level X & Level Z: Manual , Seaside, CA: Critical Thinking Company, 5th edition.
  • Ennis, Robert H. and Eric Weir, 1985, The Ennis-Weir Critical Thinking Essay Test: Test, Manual, Criteria, Scoring Sheet: An Instrument for Teaching and Testing , Pacific Grove, CA: Midwest Publications.
  • Facione, Peter A., 1990a, Critical Thinking: A Statement of Expert Consensus for Purposes of Educational Assessment and Instruction , Research Findings and Recommendations Prepared for the Committee on Pre-College Philosophy of the American Philosophical Association, ERIC Document ED315423.
  • –––, 1990b, California Critical Thinking Skills Test, CCTST – Form A , Millbrae, CA: The California Academic Press.
  • –––, 1990c, The California Critical Thinking Skills Test--College Level. Technical Report #3. Gender, Ethnicity, Major, CT Self-Esteem, and the CCTST , ERIC Document ED326584.
  • –––, 1992, California Critical Thinking Skills Test: CCTST – Form B, Millbrae, CA: The California Academic Press.
  • –––, 2000, “The Disposition Toward Critical Thinking: Its Character, Measurement, and Relationship to Critical Thinking Skill”, Informal Logic , 20(1): 61–84. [ Facione 2000 available online ]
  • Facione, Peter A. and Noreen C. Facione, 1992, CCTDI: A Disposition Inventory , Millbrae, CA: The California Academic Press.
  • Facione, Peter A., Noreen C. Facione, and Carol Ann F. Giancarlo, 2001, California Critical Thinking Disposition Inventory: CCTDI: Inventory Manual , Millbrae, CA: The California Academic Press.
  • Facione, Peter A., Carol A. Sánchez, and Noreen C. Facione, 1994, Are College Students Disposed to Think? , Millbrae, CA: The California Academic Press. ERIC Document ED368311.
  • Fisher, Alec, and Michael Scriven, 1997, Critical Thinking: Its Definition and Assessment , Norwich: Centre for Research in Critical Thinking, University of East Anglia.
  • Freire, Paulo, 1968 [1970], Pedagogia do Oprimido . Translated as Pedagogy of the Oppressed , Myra Bergman Ramos (trans.), New York: Continuum, 1970.
  • Gigerenzer, Gerd, 2001, “The Adaptive Toolbox”, in Gerd Gigerenzer and Reinhard Selten (eds.), Bounded Rationality: The Adaptive Toolbox , Cambridge, MA: MIT Press, pp. 37–50.
  • Glaser, Edward Maynard, 1941, An Experiment in the Development of Critical Thinking , New York: Bureau of Publications, Teachers College, Columbia University.
  • Groarke, Leo A. and Christopher W. Tindale, 2012, Good Reasoning Matters! A Constructive Approach to Critical Thinking , Don Mills, ON: Oxford University Press, 5th edition.
  • Halpern, Diane F., 1998, “Teaching Critical Thinking for Transfer Across Domains: Disposition, Skills, Structure Training, and Metacognitive Monitoring”, American Psychologist , 53(4): 449–455. doi:10.1037/0003-066X.53.4.449
  • –––, 2016, Manual: Halpern Critical Thinking Assessment , Mödling, Austria: Schuhfried. Available at https://pdfcoffee.com/hcta-test-manual-pdf-free.html; last accessed 2022 07 16.
  • Hamby, Benjamin, 2014, The Virtues of Critical Thinkers , Doctoral dissertation, Philosophy, McMaster University. [ Hamby 2014 available online ]
  • –––, 2015, “Willingness to Inquire: The Cardinal Critical Thinking Virtue”, in Martin Davies and Ronald Barnett (eds.), The Palgrave Handbook of Critical Thinking in Higher Education , New York: Palgrave Macmillan, pp. 77–87.
  • Haran, Uriel, Ilana Ritov, and Barbara A. Mellers, 2013, “The Role of Actively Open-minded Thinking in Information Acquisition, Accuracy, and Calibration”, Judgment and Decision Making , 8(3): 188–201.
  • Hatcher, Donald and Kevin Possin, 2021, “Commentary: Thinking Critically about Critical Thinking Assessment”, in Daniel Fasko, Jr. and Frank Fair (eds.), Critical Thinking and Reasoning: Theory, Development, Instruction, and Assessment , Leiden: Brill, pp. 298–322. doi: 10.1163/9789004444591_017
  • Haynes, Ada, Elizabeth Lisic, Kevin Harris, Katie Leming, Kyle Shanks, and Barry Stein, 2015, “Using the Critical Thinking Assessment Test (CAT) as a Model for Designing Within-Course Assessments: Changing How Faculty Assess Student Learning”, Inquiry: Critical Thinking Across the Disciplines , 30(3): 38–48. doi:10.5840/inquiryct201530316
  • Haynes, Ada and Barry Stein, 2021, “Observations from a Long-Term Effort to Assess and Improve Critical Thinking”, in Daniel Fasko, Jr. and Frank Fair (eds.), Critical Thinking and Reasoning: Theory, Development, Instruction, and Assessment , Leiden: Brill, pp. 231–254. doi: 10.1163/9789004444591_014
  • Hiner, Amanda L. 2021. “Equipping Students for Success in College and Beyond: Placing Critical Thinking Instruction at the Heart of a General Education Program”, in Daniel Fasko, Jr. and Frank Fair (eds.), Critical Thinking and Reasoning: Theory, Development, Instruction, and Assessment , Leiden: Brill, pp. 188–208. doi: 10.1163/9789004444591_012
  • Hitchcock, David, 2017, “Critical Thinking as an Educational Ideal”, in his On Reasoning and Argument: Essays in Informal Logic and on Critical Thinking , Dordrecht: Springer, pp. 477–497. doi:10.1007/978-3-319-53562-3_30
  • –––, 2021, “Seven Philosophical Implications of Critical Thinking: Themes, Variations, Implications”, in Daniel Fasko, Jr. and Frank Fair (eds.), Critical Thinking and Reasoning: Theory, Development, Instruction, and Assessment , Leiden: Brill, pp. 9–30. doi: 10.1163/9789004444591_002
  • hooks, bell, 1994, Teaching to Transgress: Education as the Practice of Freedom , New York and London: Routledge.
  • –––, 2010, Teaching Critical Thinking: Practical Wisdom , New York and London: Routledge.
  • Johnson, Ralph H., 1992, “The Problem of Defining Critical Thinking”, in Stephen P, Norris (ed.), The Generalizability of Critical Thinking , New York: Teachers College Press, pp. 38–53.
  • Kahane, Howard, 1971, Logic and Contemporary Rhetoric: The Use of Reason in Everyday Life , Belmont, CA: Wadsworth.
  • Kahneman, Daniel, 2011, Thinking, Fast and Slow , New York: Farrar, Straus and Giroux.
  • Kahneman, Daniel, Olivier Sibony, & Cass R. Sunstein, 2021, Noise: A Flaw in Human Judgment , New York: Little, Brown Spark.
  • Kenyon, Tim, and Guillaume Beaulac, 2014, “Critical Thinking Education and Debasing”, Informal Logic , 34(4): 341–363. [ Kenyon & Beaulac 2014 available online ]
  • Krathwohl, David R., Benjamin S. Bloom, and Bertram B. Masia, 1964, Taxonomy of Educational Objectives, Handbook II: Affective Domain , New York: David McKay.
  • Kuhn, Deanna, 1991, The Skills of Argument , New York: Cambridge University Press. doi:10.1017/CBO9780511571350
  • –––, 2019, “Critical Thinking as Discourse”, Human Development, 62 (3): 146–164. doi:10.1159/000500171
  • Lipman, Matthew, 1987, “Critical Thinking–What Can It Be?”, Analytic Teaching , 8(1): 5–12. [ Lipman 1987 available online ]
  • –––, 2003, Thinking in Education , Cambridge: Cambridge University Press, 2nd edition.
  • Loftus, Elizabeth F., 2017, “Eavesdropping on Memory”, Annual Review of Psychology , 68: 1–18. doi:10.1146/annurev-psych-010416-044138
  • Makaiau, Amber Strong, 2021, “The Good Thinker’s Tool Kit: How to Engage Critical Thinking and Reasoning in Secondary Education”, in Daniel Fasko, Jr. and Frank Fair (eds.), Critical Thinking and Reasoning: Theory, Development, Instruction, and Assessment , Leiden: Brill, pp. 168–187. doi: 10.1163/9789004444591_011
  • Martin, Jane Roland, 1992, “Critical Thinking for a Humane World”, in Stephen P. Norris (ed.), The Generalizability of Critical Thinking , New York: Teachers College Press, pp. 163–180.
  • Mayhew, Katherine Camp, and Anna Camp Edwards, 1936, The Dewey School: The Laboratory School of the University of Chicago, 1896–1903 , New York: Appleton-Century. [ Mayhew & Edwards 1936 available online ]
  • McPeck, John E., 1981, Critical Thinking and Education , New York: St. Martin’s Press.
  • Moore, Brooke Noel and Richard Parker, 2020, Critical Thinking , New York: McGraw-Hill, 13th edition.
  • Nickerson, Raymond S., 1998, “Confirmation Bias: A Ubiquitous Phenomenon in Many Guises”, Review of General Psychology , 2(2): 175–220. doi:10.1037/1089-2680.2.2.175
  • Nieto, Ana Maria, and Jorge Valenzuela, 2012, “A Study of the Internal Structure of Critical Thinking Dispositions”, Inquiry: Critical Thinking across the Disciplines , 27(1): 31–38. doi:10.5840/inquiryct20122713
  • Norris, Stephen P., 1985, “Controlling for Background Beliefs When Developing Multiple-choice Critical Thinking Tests”, Educational Measurement: Issues and Practice , 7(3): 5–11. doi:10.1111/j.1745-3992.1988.tb00437.x
  • Norris, Stephen P. and Robert H. Ennis, 1989, Evaluating Critical Thinking (The Practitioners’ Guide to Teaching Thinking Series), Pacific Grove, CA: Midwest Publications.
  • Norris, Stephen P. and Ruth Elizabeth King, 1983, Test on Appraising Observations , St. John’s, NL: Institute for Educational Research and Development, Memorial University of Newfoundland.
  • –––, 1984, The Design of a Critical Thinking Test on Appraising Observations , St. John’s, NL: Institute for Educational Research and Development, Memorial University of Newfoundland. ERIC Document ED260083.
  • –––, 1985, Test on Appraising Observations: Manual , St. John’s, NL: Institute for Educational Research and Development, Memorial University of Newfoundland.
  • –––, 1990a, Test on Appraising Observations , St. John’s, NL: Institute for Educational Research and Development, Memorial University of Newfoundland, 2nd edition.
  • –––, 1990b, Test on Appraising Observations: Manual , St. John’s, NL: Institute for Educational Research and Development, Memorial University of Newfoundland, 2nd edition.
  • OCR [Oxford, Cambridge and RSA Examinations], 2011, AS/A Level GCE: Critical Thinking – H052, H452 , Cambridge: OCR. Past papers available at https://pastpapers.co/ocr/?dir=A-Level/Critical-Thinking-H052-H452; last accessed 2022 07 16.
  • Ontario Ministry of Education, 2013, The Ontario Curriculum Grades 9 to 12: Social Sciences and Humanities . Available at http://www.edu.gov.on.ca/eng/curriculum/secondary/ssciences9to122013.pdf ; last accessed 2022 07 16.
  • Passmore, John Arthur, 1980, The Philosophy of Teaching , London: Duckworth.
  • Paul, Richard W., 1981, “Teaching Critical Thinking in the ‘Strong’ Sense: A Focus on Self-Deception, World Views, and a Dialectical Mode of Analysis”, Informal Logic , 4(2): 2–7. [ Paul 1981 available online ]
  • –––, 1984, “Critical Thinking: Fundamental to Education for a Free Society”, Educational Leadership , 42(1): 4–14.
  • –––, 1985, “McPeck’s Mistakes”, Informal Logic , 7(1): 35–43. [ Paul 1985 available online ]
  • Paul, Richard W. and Linda Elder, 2006, The Miniature Guide to Critical Thinking: Concepts and Tools , Dillon Beach, CA: Foundation for Critical Thinking, 4th edition.
  • Payette, Patricia, and Edna Ross, 2016, “Making a Campus-Wide Commitment to Critical Thinking: Insights and Promising Practices Utilizing the Paul-Elder Approach at the University of Louisville”, Inquiry: Critical Thinking Across the Disciplines , 31(1): 98–110. doi:10.5840/inquiryct20163118
  • Possin, Kevin, 2008, “A Field Guide to Critical-Thinking Assessment”, Teaching Philosophy , 31(3): 201–228. doi:10.5840/teachphil200831324
  • –––, 2013a, “Some Problems with the Halpern Critical Thinking Assessment (HCTA) Test”, Inquiry: Critical Thinking across the Disciplines , 28(3): 4–12. doi:10.5840/inquiryct201328313
  • –––, 2013b, “A Serious Flaw in the Collegiate Learning Assessment (CLA) Test”, Informal Logic , 33(3): 390–405. [ Possin 2013b available online ]
  • –––, 2013c, “A Fatal Flaw in the Collegiate Learning Assessment Test”, Assessment Update , 25 (1): 8–12.
  • –––, 2014, “Critique of the Watson-Glaser Critical Thinking Appraisal Test: The More You Know, the Lower Your Score”, Informal Logic , 34(4): 393–416. [ Possin 2014 available online ]
  • –––, 2020, “CAT Scan: A Critical Review of the Critical-Thinking Assessment Test”, Informal Logic , 40 (3): 489–508. [Available online at https://informallogic.ca/index.php/informal_logic/article/view/6243]
  • Rawls, John, 1971, A Theory of Justice , Cambridge, MA: Harvard University Press.
  • Rear, David, 2019, “One Size Fits All? The Limitations of Standardised Assessment in Critical Thinking”, Assessment & Evaluation in Higher Education , 44(5): 664–675. doi: 10.1080/02602938.2018.1526255
  • Rousseau, Jean-Jacques, 1762, Émile , Amsterdam: Jean Néaulme.
  • Scheffler, Israel, 1960, The Language of Education , Springfield, IL: Charles C. Thomas.
  • Scriven, Michael, and Richard W. Paul, 1987, Defining Critical Thinking , Draft statement written for the National Council for Excellence in Critical Thinking Instruction. Available at http://www.criticalthinking.org/pages/defining-critical-thinking/766 ; last accessed 2022 07 16.
  • Sheffield, Clarence Burton Jr., 2018, “Promoting Critical Thinking in Higher Education: My Experiences as the Inaugural Eugene H. Fram Chair in Applied Critical Thinking at Rochester Institute of Technology”, Topoi , 37(1): 155–163. doi:10.1007/s11245-016-9392-1
  • Siegel, Harvey, 1985, “McPeck, Informal Logic and the Nature of Critical Thinking”, in David Nyberg (ed.), Philosophy of Education 1985: Proceedings of the Forty-First Annual Meeting of the Philosophy of Education Society , Normal, IL: Philosophy of Education Society, pp. 61–72.
  • –––, 1988, Educating Reason: Rationality, Critical Thinking, and Education , New York: Routledge.
  • –––, 1999, “What (Good) Are Thinking Dispositions?”, Educational Theory , 49(2): 207–221. doi:10.1111/j.1741-5446.1999.00207.x
  • Simon, Herbert A., 1956, “Rational Choice and the Structure of the Environment”, Psychological Review , 63(2): 129–138. doi: 10.1037/h0042769
  • Simpson, Elizabeth, 1966–67, “The Classification of Educational Objectives: Psychomotor Domain”, Illinois Teacher of Home Economics , 10(4): 110–144, ERIC document ED0103613. [ Simpson 1966–67 available online ]
  • Skolverket, 2018, Curriculum for the Compulsory School, Preschool Class and School-age Educare , Stockholm: Skolverket, revised 2018. Available at https://www.skolverket.se/download/18.31c292d516e7445866a218f/1576654682907/pdf3984.pdf; last accessed 2022 07 15.
  • Smith, B. Othanel, 1953, “The Improvement of Critical Thinking”, Progressive Education , 30(5): 129–134.
  • Smith, Eugene Randolph, Ralph Winfred Tyler, and the Evaluation Staff, 1942, Appraising and Recording Student Progress , Volume III of Adventure in American Education , New York and London: Harper & Brothers.
  • Splitter, Laurance J., 1987, “Educational Reform through Philosophy for Children”, Thinking: The Journal of Philosophy for Children , 7(2): 32–39. doi:10.5840/thinking1987729
  • Stanovich Keith E., and Paula J. Stanovich, 2010, “A Framework for Critical Thinking, Rational Thinking, and Intelligence”, in David D. Preiss and Robert J. Sternberg (eds), Innovations in Educational Psychology: Perspectives on Learning, Teaching and Human Development , New York: Springer Publishing, pp 195–237.
  • Stanovich Keith E., Richard F. West, and Maggie E. Toplak, 2011, “Intelligence and Rationality”, in Robert J. Sternberg and Scott Barry Kaufman (eds.), Cambridge Handbook of Intelligence , Cambridge: Cambridge University Press, 3rd edition, pp. 784–826. doi:10.1017/CBO9780511977244.040
  • Tankersley, Karen, 2005, Literacy Strategies for Grades 4–12: Reinforcing the Threads of Reading , Alexandria, VA: Association for Supervision and Curriculum Development.
  • Thayer-Bacon, Barbara J., 1992, “Is Modern Critical Thinking Theory Sexist?”, Inquiry: Critical Thinking Across the Disciplines , 10(1): 3–7. doi:10.5840/inquiryctnews199210123
  • –––, 1993, “Caring and Its Relationship to Critical Thinking”, Educational Theory , 43(3): 323–340. doi:10.1111/j.1741-5446.1993.00323.x
  • –––, 1995a, “Constructive Thinking: Personal Voice”, Journal of Thought , 30(1): 55–70.
  • –––, 1995b, “Doubting and Believing: Both are Important for Critical Thinking”, Inquiry: Critical Thinking across the Disciplines , 15(2): 59–66. doi:10.5840/inquiryctnews199515226
  • –––, 2000, Transforming Critical Thinking: Thinking Constructively , New York: Teachers College Press.
  • Toulmin, Stephen Edelston, 1958, The Uses of Argument , Cambridge: Cambridge University Press.
  • Turri, John, Mark Alfano, and John Greco, 2017, “Virtue Epistemology”, in Edward N. Zalta (ed.), The Stanford Encyclopedia of Philosophy (Winter 2017 Edition). URL = < https://plato.stanford.edu/archives/win2017/entries/epistemology-virtue/ >
  • Vincent-Lancrin, Stéphan, Carlos González-Sancho, Mathias Bouckaert, Federico de Luca, Meritxell Fernández-Barrerra, Gwénaël Jacotin, Joaquin Urgel, and Quentin Vidal, 2019, Fostering Students’ Creativity and Critical Thinking: What It Means in School. Educational Research and Innovation , Paris: OECD Publishing.
  • Warren, Karen J. 1988. “Critical Thinking and Feminism”, Informal Logic , 10(1): 31–44. [ Warren 1988 available online ]
  • Watson, Goodwin, and Edward M. Glaser, 1980a, Watson-Glaser Critical Thinking Appraisal, Form A , San Antonio, TX: Psychological Corporation.
  • –––, 1980b, Watson-Glaser Critical Thinking Appraisal: Forms A and B; Manual , San Antonio, TX: Psychological Corporation,
  • –––, 1994, Watson-Glaser Critical Thinking Appraisal, Form B , San Antonio, TX: Psychological Corporation.
  • Weinstein, Mark, 1990, “Towards a Research Agenda for Informal Logic and Critical Thinking”, Informal Logic , 12(3): 121–143. [ Weinstein 1990 available online ]
  • –––, 2013, Logic, Truth and Inquiry , London: College Publications.
  • Willingham, Daniel T., 2019, “How to Teach Critical Thinking”, Education: Future Frontiers , 1: 1–17. [Available online at https://prod65.education.nsw.gov.au/content/dam/main-education/teaching-and-learning/education-for-a-changing-world/media/documents/How-to-teach-critical-thinking-Willingham.pdf.]
  • Zagzebski, Linda Trinkaus, 1996, Virtues of the Mind: An Inquiry into the Nature of Virtue and the Ethical Foundations of Knowledge , Cambridge: Cambridge University Press. doi:10.1017/CBO9781139174763
How to cite this entry . Preview the PDF version of this entry at the Friends of the SEP Society . Look up topics and thinkers related to this entry at the Internet Philosophy Ontology Project (InPhO). Enhanced bibliography for this entry at PhilPapers , with links to its database.
  • Association for Informal Logic and Critical Thinking (AILACT)
  • Critical Thinking Across the European Higher Education Curricula (CRITHINKEDU)
  • Critical Thinking Definition, Instruction, and Assessment: A Rigorous Approach
  • Critical Thinking Research (RAIL)
  • Foundation for Critical Thinking
  • Insight Assessment
  • Partnership for 21st Century Learning (P21)
  • The Critical Thinking Consortium
  • The Nature of Critical Thinking: An Outline of Critical Thinking Dispositions and Abilities , by Robert H. Ennis

abilities | bias, implicit | children, philosophy for | civic education | decision-making capacity | Dewey, John | dispositions | education, philosophy of | epistemology: virtue | logic: informal

Copyright © 2022 by David Hitchcock < hitchckd @ mcmaster . ca >

  • Accessibility

Support SEP

Mirror sites.

View this site from another server:

  • Info about mirror sites

The Stanford Encyclopedia of Philosophy is copyright © 2024 by The Metaphysics Research Lab , Department of Philosophy, Stanford University

Library of Congress Catalog Data: ISSN 1095-5054

Argumentation, Evidence Evaluation and Critical Thinking

  • First Online: 23 November 2011
  • pp 1001–1015

Cite this chapter

critical thinking analysis and evaluation of argument

  • María Pilar Jiménez-Aleixandre 4 &
  • Blanca Puig 4  

Part of the book series: Springer International Handbooks of Education ((SIHE,volume 24))

13k Accesses

32 Citations

This chapter addresses the relationships between argumentation and critical thinking. The underlying questions are how argumentation supports the capacity to discriminate between claims justified by evidence and mere opinion, and how argumentation can contribute to two types of objectives related to learning science and to citizenship. First, various meanings for critical thinking in different communities are reviewed. Then, we propose our characterisation of critical thinking, which assumes that evidence evaluation is an essential component, but that there are other components related to the capacities of reflecting on the world around us and of participating in it (e.g. developing an independent opinion, including challenging the ideas of one’s own community). This characterisation draws both from the notion of commitment to evidence and from critical theorists. Using this frame, the chapter examines the contributions of argumentation in science education to the components of critical thinking, and also discusses the evaluation of evidence and the different factors influencing or even hampering it. The chapter concludes with consideration of the development of critical thinking in the science classroom.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save.

  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
  • Available as EPUB and PDF
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
  • Durable hardcover edition

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

critical thinking analysis and evaluation of argument

Critical Thinking and/or Argumentation in Higher Education

critical thinking analysis and evaluation of argument

Fostering critical reasoning: Developing argumentative competence in early and middle primary years

Research trends on argumentation in science education: a journal content analysis from 1998–2014.

Aikenhead, G. S. (1985). Collective decision making in the social context of science. Science Education , 69 , 453–475.

Article   Google Scholar  

Anderson, T., Howe, C., Soden, R., Halliday, J., & Low, J. (2001). Peer interaction and the learning of critical thinking skills in further education students. Instructional Science , 29 , 1–32.

Google Scholar  

Bourdieu, P., & Passeron, J.-C. (1970). La reproduction: Eléments pour une théorie du système d’enseignement . Paris: Les Éditions de Minuit (Translated as: Reproduction in education, society and culture. London: Sage, 1977).

Cooper, K., & White, R. (2007). The practical critical educator . Dordrecht, the Netherlands: Springer.

Desmond, A., & Moore, J. (1992). Darwin . London: Penguin.

Duschl, R. A., & Grandy, R. E. (2008). Reconsidering the character and role of inquiry in school science: Framing the debates. In R. A. Duschl & R. E. Grandy (Eds.), Teaching scientific inquiry: Recommendations for research and implementation (pp. 1–37). Rotterdam: Sense Publishers.

Eichinger, D. C., Anderson, C. W., Palincsar, A. S., & David, Y. M. (1991, April). An illustration of the roles of content knowledge, scientific argument, and social norms in collaborative problem solving . Paper presented at the Annual Meeting of the American Educational Research Association, Chicago.

Eirexas, F., & Jiménez-Aleixandre, M. P. (2007, August). What does sustainability mean? Critical thinking and environmental concepts in arguments about energy by 12th grade students . Paper presented at the European Science Education Research Association Conference, Malmo.

Ennis, R. H. (1987). A taxonomy of critical thinking abilities and dispositions. In J. B. Baron & R. J. Sternberg (Eds.), Teaching thinking skills: Theory and practice (pp. 9–26). New York: W. H. Freeman.

Ennis, R. H. (1992). Critical thinking: What is it? In H. A. Alexander (Ed.), Philosophy of Education 1992: Proceedings of the Forty-Eighth Annual Meeting of the Philosophy of Education Society (pp. 76–80). Urbana, IL: Philosophy of Education Society.

Erduran, S., & Jiménez-Aleixandre, M. P. (Eds.). (2008). Argumentation in science education: Perspectives from classroom-based research . Dordrecht: Springer.

Fairclough, N. (1995). Critical discourse analysis. The critical study of language . Harlow: Longman.

Freinet, C. (1969). Pour l’école du peuple . Paris: Maspero.

Freire, P. (1970). Pedagogia do oprimido . Rio de Janeiro: Paz e Terra. (Translated as Pedagogy of the oppressed , Harmondsworth: Penguin, 1972).

Gruber, H. (1981). Darwin on man: A psychological study of scientific creativity . Chicago: The University of Chicago Press.

Habermas, J. (1981–1984). The theory of communicative action . Boston: Beacon Press.

Jiménez-Aleixandre, M. P. (2008). Designing argumentation learning environments. In S. Erduran & M. P. Jiménez-Aleixandre (Eds.), Argumentation in science education: perspectives from classroom-based research (pp. 91–115). Dordrecht, the Netherlands: Springer.

Jiménez-Aleixandre, M. P., Agraso, M. F., & Eirexas, F. (2004, April). Scientific authority and empirical data in argument warrants about the Prestige oil spill . Paper presented at the Annual Meeting of the National Association for Research in Science Teaching. Vancouver.

Jiménez-Aleixandre, M. P., Bugallo Rodríguez, A., & Duschl, R. A. (2000). “Doing the lesson” or “doing science”: Argument in high school genetics. Science Education, 84 , 757–792.

Jiménez-Aleixandre, M. P., & Erduran, S. (2008). Argumentation in science education: An overview. In S. Erduran & M. P. Jiménez-Aleixandre (Eds.), Argumentation in science education: Perspectives from classroom-based research (pp. 3–27). Dordrecht, the Netherlands: Springer.

Jiménez-Aleixandre, M. P., & Federico-Agraso, M. (2009). Justification and persuasion about cloning: Arguments in Hwang’s paper and journalistic reported versions . Research in Science Education , 39, 331–347. doi 10.1007/s11165-008-9113-x.

Kelly, G. J., Druker S., & Chen, C. (1998). Students’ reasoning about electricity: Combining performance assessment with argumentation analysis. International Journal of Science Education , 20 , 849–871.

Kolstø, S. D., & Ratcliffe, M. (2008). Social aspects of argumentation. In S. Erduran & M. P. Jiménez-Aleixandre (Eds.), Argumentation in science education: Perspectives from classroom-based research (pp. 117–136). Dordrecht, the Netherlands: Springer.

Kolstø, S. D., Bungum, B., Arnesen, E., Isnes, A., Kristensen, T., Mathiassen, K., Mestad, et al. (2006). Science students’ critical examination of scientific information related to socio-scientific issues. Science Education , 90 , 632–655.

Kuhn, D. (1991). The skills of argument . Cambridge, MA: Cambridge University Press.

Book   Google Scholar  

Kuhn, D. (2005). Education for thinking . Cambridge, MA: Harvard University Press.

López-Facal, R., & Jiménez-Aleixandre, M. P. (2009). Identities, social representations and critical thinking. Cultural Studies of Science Education , 4, 689–695. doi 10.1007/s11422-008-9134-9.

Maloney, J. (2007). Children’s roles and use of evidence in science: An analysis of decision-making in small groups. British Educational Research Journal , 33 , 371–401.

Márquez, C., Prats, A., & Marbá, A. (2007, August). A critical reading of press advertisement in the science class . Paper presented at the European Science Education Research Association Conference, Malmo.

McCarthy, C. (1992). Why be critical? (Or rational or moral?) On the justification of critical thinking. In H. A. Alexander (Ed.), Philosophy of Education 1992: Proceedings of the Forty-Eighth Annual Meeting of the Philosophy of Education Society (pp. 60–68). Urbana, IL: Philosophy of Education Society.

Moscovici (1961–1976). La psychanalyse, son image et son public (2nd ed. revised). Paris: Presses Universitaires de France.

Norris, S. P. (1992). Bachelors, buckyballs and ganders: Seeking analogues for definitions of “critical thinker”. In H. A. Alexander (Ed.), Philosophy of Education 1992: Proceedings of the Forty-Eighth Annual Meeting of the Philosophy of Education Society (pp. 69–71). Urbana, IL: Philosophy of Education Society.

Norris, S. P. (1995). Learning to live with scientific expertise: Toward a theory of intellectual communalism for guiding science teaching. Science Education , 79 , 201–217.

Norris, S. P., & Korpan, C. A. (2000). Science, views about science, and pluralistic science education. In R. Millar, J. Leach, & J. Osborne (Eds.), Improving science education: The contribution of research (pp. 227–244). Buckingham, UK: Open University Press.

Osborne, J., Erduran, S., & Simon, S. (2004). Ideas, evidence and argument in science . London: King’s College London.

Perry, W. G. (1981). Cognitive and ethical growth: The making of meaning. In A. W. Chickering & Associates (Eds.), The modern American college (pp. 76–116). San Francisco: Jossey-Bass.

Puig, B., & Jiménez-Aleixandre, M. P. (2009). What do 9th grade students consider as evidence for or against claims about genetic differences in intelligence between black and white “races”? In M. Hammann, A. J. Waarlo & K. Boersma (Eds.), The nature of research in biological education: Old and new perspectives on theoretical and methodological issues (pp. 137–151). Utrecht: Utrecht University CD-ß Press.

Sadler, T. D., & Zeidler, D. L. (2005). Patterns of informal reasoning in the context of socio scientific decision-making. Journal of Research in Science Teaching , 42 , 112–138.

Siegel, H. (1988). Educating reason: Rationality, critical thinking and education . New York: Routledge.

Siegel, H. (1989). The rationality of science, critical thinking and science education. Synthese , 80 , 9–41.

Simonneaux, L., & Simonneaux, J. (2009). Students’ socio-scientific reasoning on controversies from the viewpoint of education for sustainable development. Cultural Studies of Science Education . doi 10.1007/s11422-008-9141-x.

Sóñora, F., García-Rodeja, I., & Brañas, M. (2001). Discourse analysis: Pupils’ discussions of soil science. In I. García-Rodeja, J. Díaz, U. Harms, & M. P. Jiménez-Aleixandre (Eds.), Proceedings of the 3rd ERIDOB Conference (pp. 313–326). Santiago de Compostela: University of Santiago de Compostela.

Stanisstreet, M., Spofforth N., & Williams, T. (1993). Attitudes of children to the uses of animals. International Journal of Science Education , 15 , 411–425.

Toulmin, S. (2001). Return to reason . Cambridge, MA: Harvard University Press.

Tytler, R., Duggan, S., & Gott, R. (2000). Dimensions of evidence, the public understanding of science and science education. International Journal of Science Education, 2 , 815–832.

Zeidler, D. L., & Sadler, T. D. (2008). The role of moral reasoning on argumentation: Conscience, character and care. In S. Erduran & M. P. Jiménez-Aleixandre (Eds.), Argumentation in science education: Perspectives from classroom-based research (pp. 201–216). Dordrecht, the Netherlands: Springer.

Zohar, A., Weinberger, Y., & Tamir, P. (1994). The effect of the biology critical thinking project on the development of critical thinking. Journal of Research in Science Teaching , 31 , 183–196.

Download references

Acknowledgements

This work was supported by the Spanish Ministerio de Educación y Ciencia (MEC), partly funded by the European Regional Development Fund (ERDF), code SEJ2006-15589-C02-01/EDUC. The authors are grateful to Glen Aikenhead for his valuable feedback on the first draft.

Author information

Authors and affiliations.

Didactica das Ciencias Experimentais, University of Santiago de Compostela, Santiago de Compostela, Spain

María Pilar Jiménez-Aleixandre & Blanca Puig

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to María Pilar Jiménez-Aleixandre .

Editor information

Editors and affiliations.

Science & Mathematics Education Centre, Curtin University of Technology, Perth, West Australia, Australia

Barry J. Fraser

The Graduate Centre, City University of New York, New York, 10016-4309, New York, USA

Kenneth Tobin

Ctr. Mathematics & Science Education, Queensland University of Technology, Victoria Park Rd., Kelvin Grove, 4059, Queensland, Australia

Campbell J. McRobbie

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Jiménez-Aleixandre, M.P., Puig, B. (2012). Argumentation, Evidence Evaluation and Critical Thinking. In: Fraser, B., Tobin, K., McRobbie, C. (eds) Second International Handbook of Science Education. Springer International Handbooks of Education, vol 24. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9041-7_66

Download citation

DOI : https://doi.org/10.1007/978-1-4020-9041-7_66

Published : 23 November 2011

Publisher Name : Springer, Dordrecht

Print ISBN : 978-1-4020-9040-0

Online ISBN : 978-1-4020-9041-7

eBook Packages : Humanities, Social Sciences and Law Education (R0)

Share this chapter

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Publish with us

Policies and ethics

  • Find a journal
  • Track your research

Module Four: Delivery of Demonstration Speeches

Critical thinking & reasoning: logic and the role of arguments.

Critical thinkers tend to exhibit certain traits that are common to them. These traits are summarized in Table 6.1: [1]

Table 6.1 Traits of Critical Thinkers
Critical thinkers are open and receptive to all ideas and arguments, even those with which they may disagree. Critical thinkers reserve judgment on a message until they have examined the claims, logic, reasoning, and evidence used. Critical thinkers are fair-minded and understand that a message is not inherently wrong or flawed if it differs from their own thoughts. Critical thinkers remain open to the possibility of changing their view on an issue when logic and evidence supports doing so.
Critical thinkers are interested in understanding what is happening in a message. Critical thinkers ask questions of the message, breaking it into its individual components and examining each in turn. Critical thinkers dissect these components looking for sound logic and reasoning.
Critical thinkers avoid jumping to conclusions. Critical thinkers take the time to systematically examine a message. Critical thinkers apply accepted criteria or conditions to their analyses.
Critical thinkers are curious by nature. Critical thinkers ask questions of what is going on around them and in a message. Critical thinkers want to know more and take action to learn more.
Critical thinkers are prudent in acting and making judgments. Critical thinkers are sensible in their actions. That is, they don’t just jump on the bandwagon of common thought because it looks good or everyone else is doing it.
Critical thinkers exercise an ethical foundation based in searching for the truth. Critical thinkers understand that even the wisest people may be wrong at times.
Critical thinkers have faith in the power of logic and sound reasoning. Critical thinkers understand that it is in everyone’s best interest to encourage and develop sound logic. More importantly, critical thinkers value the power of letting others draw their own conclusions.

Recall that critical thinking is an active mode of thinking. Instead of just receiving messages and accepting them as is, we consider what they are saying. We ask if messages are well-supported. We determine if their logic is sound or slightly flawed. In other words, we act on the messages before we take action based on them. When we enact critical thinking on a message, we engage a variety of skills including: listening, analysis, evaluation, inference and interpretation or explanation, and self-regulation [2]

Next, we will examine each of these skills and their role in critical thinking in greater detail. As you read through the explanation of and examples for each skill, think about how it works in conjunction with the others. It’s important to note that while our discussion of the skills is presented in a linear manner, in practice our use of each skill is not so straightforward. We may exercise different skills simultaneously or jump forward and backward.

Martha Stewart

“ Martha Stewart ” by nrkbeta.  CC-BY-SA .

Without an open-minded mind, you can never be a great success. ~ Martha Stewart

In order to understand listening, we must first understand the difference between listening and hearing . At its most basic, hearing refers to the physiological process of receiving sounds, while listening refers to the  psychological process of interpreting or making sense of those sounds.

Every minute of every day we are surrounded by hundreds of different noises and sounds. If we were to try to make sense of each different sound we would probably spend our day just doing this. While we may hear all of the noises, we filter out many of them. They pass through our lives without further notice. Certain noises, however, jump to the forefront of our consciousness. As we listen to them, we make sense of these sounds. We do this every day without necessarily thinking about the process. Like many other bodily functions, it happens without our willing it to happen.

Critical thinking requires that we consciously listen to messages. We must focus on what is being said – and not said. We must strive not to be distracted by other outside noises or the internal noise of our own preconceived ideas. For the moment we only need to take in the message.

Listening becomes especially difficult when the message contains highly charged information. Think about what happens when you try to discuss a controversial issue such as abortion. As the other person speaks, you may have every good intention of listening to the entire argument.

However, when the person says something you feel strongly about you start formulating a counter-argument in your head. The end result is that both sides end up talking past each other without ever really listening to what the other says.

Once we have listened to a message, we can begin to analyze it. In practice we often begin analyzing messages while still listening to them. When we analyze something, we consider it in greater detail, separating out the main components of the message. In a sense, we are acting like a surgeon on the message, carving out all of the different elements and laying them out for further consideration and possible action.

Let’s return to Shonda’s persuasive speech to see analysis in action. As part of the needs section of her speech, Shonda makes the following remarks:

Americans today are some of the unhealthiest people on Earth. It seems like not a week goes by without some news story relating how we are the fattest country in the world. In addition to being overweight, we suffer from a number of other health problems. When I was conducting research for my speech, I read somewhere that heart attacks are the number one killer of men and the number two killer of women. Think about that. My uncle had a heart attack and had to be rushed to the hospital. They hooked him up to a bunch of different machines to keep him alive. We all thought he was going to die. He’s ok now, but he has to take a bunch of pills every day and eat a special diet. Plus he had to pay thousands of dollars in medical bills. Wouldn’t you like to know how to prevent this from happening to you?

If we were to analyze this part of Shonda’s speech (see Table 6.2), we could begin by looking at the claims she makes. We could then look at the evidence she presents in support of these claims. Having parsed out the various elements, we are then ready to evaluate them and by extension the message as a whole.

When we evaluate something we continue the process of analysis by assessing the various claims and arguments for validity. One way we evaluate a message is to ask questions about what is being said and who is saying it. The following is a list of typical questions we may ask, along with an evaluation of the ideas in Shonda’s speech.

Is the speaker credible?

Yes. While Shonda may not be an expert per se on the issue of health benefits related to wine, she has made herself a mini-expert through conducting research.

Does the statement ring true or false based on common sense?

It sounds kind of fishy. Four or more glasses of wine in one sitting doesn’t seem right. In fact, it seems like it might be bordering on binge drinking.

Does the logic employed hold up to scrutiny?

Based on the little bit of Shonda’s speech we see here, her logic does seem to be sound. As we will see later on, she actually commits a few fallacies.

What questions or objections are raised by the message?

In addition to the possibility of Shonda’s proposal being binge drinking, it also raises the possibility of creating alcoholism or causing other long term health problems.

How will further information affect the message?

More information will probably contradict her claims. In fact, most medical research in this area contradicts the claim that drinking 4 or more glasses of wine a day is a good thing.

Will further information strengthen or weaken the claims?

Most likely Shonda’s claims will be weakened.

What questions or objections are raised by the claims?

In addition to the objections we’ve already discussed, there is also the problem of the credibility of Shonda’s expert “doctor.”

Table 6.2 Analysis of Shonda’s Speech
Claims Evidence

A wise man proportions his belief to the evidence. ~ David Hume

Inference and Interpretation or Explanation

“Imply” or “Infer”?

For two relatively small words, imply and infer seem to generate an inordinately large amount of confusion. Understanding the difference between the two and knowing when to use the right one is not only a useful skill, but it also makes you sound a lot smarter!

Let’s begin with imply. Imply means to suggest or convey an idea. A speaker or a piece of writing implies things. For example, in Shonda’s speech, she implies it is better to drink more red wine. In other words, she never directly says that we need to drink more red wine, but she clearly hints at it when she suggests that drinking four or more glasses a day will provide us with health benefits.

Now let’s consider infer. Infer means that something in a speaker’s words or a piece of writing helps us to draw a conclusion outside of his/her words. We infer a conclusion. Returning to Shonda’s speech, we can infer she would want us to drink more red wine rather than less. She never comes right out and says this. However, by considering her overall message, we can draw this conclusion.

Another way to think of the difference between imply and infer is: A speaker (or writer for that matter) implies. The audience infers.

Therefore, it would be incorrect to say that Shonda infers we should drink more rather than less wine. She implies this. To help you differentiate between the two, remember that an inference is something that comes from outside the spoken or written text.

The next step in critically examining a message is to interpret or explain the conclusions that we draw from it. At this phase we consider the evidence and the claims together. In effect we are reassembling the components that we parsed out during analysis. We are continuing our evaluation by looking at the evidence, alternatives, and possible conclusions.

Before we draw any inferences or attempt any explanations, we should look at the evidence provided. When we consider evidence we must first determine what, if any, kind of support is provided. Of the evidence we then ask:

  • Is the evidence sound?
  • Does the evidence say what thespeaker says it does?
  • Does contradictory evidenceexist?
  • Is the evidence from a validcredible source?

Seatbelt

Seatbelt by M.Minderhoud, CC-BY-SA .

Even though these are set up as yes or no questions, you’ll probably find in practice that your answers are a bit more complex. For example, let’s say you’re writing a speech on why we should wear our seatbelts at all times while driving. You’ve researched the topic and found solid, credible information setting forth the numerous reasons why wearing a seatbelt can help save your life and decrease the number of injuries experienced during a motor vehicle accident. Certainly, there exists contradictory evidence arguing seat belts can cause more injuries. For example, if you’re in an accident where your car is partially submerged in water, wearing a seatbelt may impede your ability to quickly exit the vehicle. Does the fact that this evidence exists negate your claims? Probably not, but you need to be thorough in evaluating and considering how you use your evidence.

A man who does not think for himself does not think at all. ~ Oscar Wilde

Self-Regulation

The final step in critically examining a message is actually a skill we should exercise throughout the entire process. With self-regulation, we consider our pre-existing thoughts on the subject and any biases we may have. We examine how what we think on an issue may have influenced the way we understand (or think we understand) the message and any conclusions we have drawn. Just as contradictory evidence doesn’t automatically negate our claims or invalidate our arguments, our biases don’t necessarily make our conclusions wrong. The goal of practicing self-regulation is not to disavow or deny our opinions. The goal is to create distance between our opinions and the messages we evaluate.

Man on bus

Man thinking on bus , by IG8. CC-BY .

The Value of Critical Thinking

In public speaking, the value of being a critical thinker cannot be overstressed. Critical thinking helps us to determine the truth or validity of arguments. However, it also helps us to formulate strong arguments for our speeches. Exercising critical thinking at all steps of the speech writing and delivering process can help us avoid situations like Shonda found herself in. Critical thinking is not a magical panacea that will make us super speakers. However, it is another tool that we can add to our speech toolbox.

As we will learn in the following pages, we construct arguments based on logic. Understanding the ways logic can be used and possibly misused is a vital skill. To help stress the importance of it, the Foundation for Critical Thinking has set forth universal standards of reasoning. These standards can be found in Table 6.3.

When the mind is thinking, it is talking to itself. ~ Plato

Table 6.3
Universal Standards of Reasoning
All reasoning has a purpose.
All reasoning is an attempt to figure something out, to settle some question, to solve some problem.
All reasoning is based on assumptions.
All reasoning is done from some point of view.
All reasoning is based on data, information, and evidence.
All reasoning is expressed through, and shaped by, concepts and ideas.
All reasoning contains inferences or interpretations by which we draw conclusions and give meaning to data.
All reasoning leads somewhere or has implications and consequences.

Logic and the Role of Arguments

Billboard that says Sharia Law threatens America.

“Sharia Law Billboard” by Matt57. Public domain.

We use logic every day. Even if we have never formally studied logical reasoning and fallacies, we can often tell when a person’s statement doesn’t sound right. Think about the claims we see in many advertisements today—Buy product X, and you will be beautiful/thin/happy or have the carefree life depicted in the advertisement. With very little critical thought, we know intuitively that simply buying a product will not magically change our lives. Even if we can’t identify the specific fallacy at work in the argument (non causa in this case), we know there is some flaw in the argument.

By studying logic and fallacies we can learn to formulate stronger and more cohesive arguments, avoiding problems like that mentioned above. The study of logic has a long history. We can trace the roots of modern logical study back to Aristotle in ancient Greece. Aristotle’s simple definition of logic as the means by which we come to know anything still provides a concise understanding of logic. [3] Of the classical pillars of a core liberal arts education of logic, grammar, and rhetoric, logic has developed as a fairly independent branch of philosophical studies. We use logic everyday when we construct statements, argue our point of view, and in myriad other ways. Understanding how logic is used will help us communicate more efficiently and effectively.

Defining Arguments

When we think and speak logically, we pull together statements that combine reasoning with evidence to support an assertion, arguments. A logical argument should not be confused with the type of argument you have with your sister or brother or any other person. When you argue with your sibling, you participate in a conflict in which you disagree about something. You may, however, use a logical argument in the midst of the argument with your sibling. Consider this example:

Man and woman arguing

“Man and Woman Arguing” by mzacha. morgueFile .

Brother and sister, Sydney and Harrison are arguing about whose turn it is to clean their bathroom. Harrison tells Sydney she should do it because she is a girl and girls are better at cleaning. Sydney responds that being a girl has nothing to do with whose turn it is. She reminds Harrison that according to their work chart, they are responsible for cleaning the bathroom on alternate weeks. She tells him she cleaned the bathroom last week; therefore, it is his turn this week. Harrison, still unconvinced, refuses to take responsibility for the chore. Sydney then points to the work chart and shows him where it specifically says it is his turn this week. Defeated, Harrison digs out the cleaning supplies.

Throughout their bathroom argument, both Harrison and Sydney use logical arguments to advance their point. You may ask why Sydney is successful and Harrison is not. This is a good question. Let’s critically think about each of their arguments to see why one fails and one succeeds.

Let’s start with Harrison’s argument. We can summarize it into three points:

  • Girls are better at cleaning bathrooms than boys.
  • Sydney is a girl.
  • Therefore, Sydney should clean the bathroom.

Harrison’s argument here is a form of deductive reasoning, specifically a syllogism. We will consider syllogisms in a few minutes. For our purposes here, let’s just focus on why Harrison’s argument fails to persuade Sydney. Assuming for the moment that we agree with Harrison’s first two premises, then it would seem that his argument makes sense. We know that Sydney is a girl, so the second premise is true. This leaves the first premise that girls are better at cleaning bathrooms than boys. This is the exact point where Harrison’s argument goes astray. The only way his entire argument will work is if we agree with the assumption girls are better at cleaning bathrooms than boys.

Let’s now look at Sydney’s argument and why it works. Her argument can be summarized as follows:

1. The bathroom responsibilities alternate weekly according to the work chart.

2. Sydney cleaned the bathroom last week.

3. The chart indicates it is Harrison’s turn to clean the bathroom this week.

4. Therefore, Harrison should clean the bathroom.

Toilet seat

“Decorative toilet seat” by Bartux~commonswikiv. Public domain.

Sydney’s argument here is a form of inductive reasoning. We will look at inductive reasoning in depth below. For now, let’s look at why Sydney’s argument succeeds where Harrison’s fails. Unlike Harrison’s argument, which rests on assumption for its truth claims, Sydney’s argument rests on evidence. We can define evidence as anything used to support the validity of an assertion. Evidence includes: testimony, scientific findings, statistics, physical objects, and many others. Sydney uses two primary pieces of evidence: the work chart and her statement that she cleaned the bathroom last week. Because Harrison has no contradictory evidence, he can’t logically refute Sydney’s assertion and is therefore stuck with scrubbing the toilet.

Defining Deduction

Deductive reasoning refers to an argument in which the truth of its premises guarantees the truth of its conclusions. Think back to Harrison’s argument for Sydney cleaning the bathroom. In order for his final claim to be valid, we must accept the truth of his claims that girls are better at cleaning bathrooms than boys. The key focus in deductive arguments is that it must be impossible for the premises to be true and the conclusion to be false. The classic example is:

All men are mortal. Socrates is a man. Therefore, Socrates is mortal.

We can look at each of these statements individually and see each is true in its own right. It is virtually impossible for the first two propositions to be true and the conclusion to be false. Any argument which fails to meet this standard commits a logical error or fallacy. Even if we might accept the arguments as good and the conclusion as possible, the argument fails as a form of deductive reasoning.

A few observations and much reasoning lead to error; many observations and a little reasoning to truth. ~ Alexis Carrel

Another way to think of deductive reasoning is to think of it as moving from a general premise to a specific premise. The basic line of reasoning looks like this:

Major premise to minor premise to conclusion.

“Deductive Reasoning” CC-BY-NC-ND .

This form of deductive reasoning is called a syllogism. A syllogism need not have only three components to its argument, but it must have at least three. We have Aristotle to thank for identifying the syllogism and making the study of logic much easier. The focus on syllogisms dominated the field of philosophy for thousands of years. In fact, it wasn’t until the early nineteenth century that we began to see the discussion of other types of logic and other forms of logical reasoning.

It is easy to fall prey to missteps in reasoning when we focus on syllogisms and deductive reasoning. Let’s return to Harrison’s argument and see what happens.

Logic: the art of thinking and reasoning in strict accordance with the limitations and incapacities of the human misunderstanding. ~ Ambrose Bierce

Girls are better at cleaning bathrooms. Sydney is a girl. Therefore, Sydney should clean the bathroom.

“Applied Deductive Reasoning” CC-BY-NC-ND .

Considered in this manner, it should be clear how the strength of the conclusion depends upon us accepting as true the first two statements. This need for truth sets up deductive reasoning as a very rigid form of reasoning. If either one of the first two premises isn’t true, then the entire argument fails.

Let’s turn to recent world events for another example.

The United States should invade any countries holding weapons of mass destruction. According to our experts, Iraq has weapons of mass destruction. Therefore, we should invade Iraq.

“US Invasion Deductive Reasoning Example” CC-BY-NC-ND .

In the debates over whether the United States should take military action in Iraq, this was the basic line of reasoning used to justify an invasion. This logic was sufficient for the United States to invade Iraq; however, as we have since learned, this line of reasoning also shows how quickly logic can go bad. We subsequently learned that the “experts” weren’t quite so confident, and their “evidence” wasn’t quite as concrete as originally represented.

Defining Induction

Inductive reasoning is often though of as the opposite of deductive reasoning; however, this approach is not wholly accurate. Inductive reasoning does move from the specific to the general. However, this fact alone does not make it the opposite of deductive reasoning. An argument which fails in its deductive reasoning may still stand inductively.

Unlike deductive reasoning, there is no standard format inductive arguments must take, making them more flexible. We can define an inductive argument as one in which the truth of its propositions lends support to the conclusion. The difference here in deduction is the truth of the propositions establishes with absolute certainty the truth of the conclusion. When we analyze an inductive argument, we do not focus on the truth of its premises. Instead we analyze inductive arguments for their strength or soundness.

Case one, Case two, and Case three in a funnel. They come out to form a conclusion.

“Inductive Reasoning Model” CC-BY-NC-ND .

Another significant difference between deduction and induction is inductive arguments do not have a standard format. Let’s return to Sydney’s argument to see how induction develops in action:

  • Bathroom cleaning responsibilities alternate weekly according to the work chart.
  • Sydney cleaned the bathroom last week.
  • The chart indicates it is Harrison’s turn to clean the bathroom this week.
  • Therefore, Harrison should clean the bathroom.

What Sydney does here is build to her conclusion that Harrison should clean the bathroom. She begins by stating the general house rule of alternate weeks for cleaning. She then adds in evidence before concluding her argument. While her argument is strong, we don’t know if it is true. There could be other factors Sydney has left out. Sydney may have agreed to take Harrison’s week of bathroom cleaning in exchange for him doing another one of her chores. Or there may be some extenuating circumstances preventing Harrison from bathroom cleaning this week.

You should carefully study the Art of Reasoning, as it is what most people are very deficient in, and I know few things more disagreeable than to argue, or even converse with a man who has no idea of inductive and deductive philosophy. ~ William John Wills

Let’s return to the world stage for another example. After the 9/11 attacks on the World Trade Center, we heard variations of the following arguments:

  • The terrorists were Muslim (or Arab or Middle Eastern)
  • The terrorists hated America.
  • Therefore, all Muslims (or Arabs or Middle Easterners) hate America.

Rubble of the World Trade Center.

“1993 Word Trade Center bombing” by Bureau of ATF 1993 Explosives Incident Report. Public domain.

Clearly, we can see the problem in this line of reasoning. Beyond being a scary example of hyperbolic rhetoric, we can all probably think of at least one counter example to disprove the conclusion. However, individual passions and biases caused many otherwise rational people to say these things in the weeks following the attacks. This example also clearly illustrates how easy it is to get tripped up in your use of logic and the importance of practicing self-regulation.

  • Adapted from Facione, P. A. (1990). Critical Thinking: A Statement of Expert Consensus for Purposes of Educational Assessment and Instruction, The Delphi Report (Executive Summary) . Millbrae, CA: California Academic Press. ↵
  • Adapted from Facione, P. A. (1990). ↵
  • Aristotle. (1989). Prior Analytics (Trans. Robin Smith). Cambridge, MA: Hackett Publishing. ↵
  • Image of man and woman arguing. Authored by : mzacha. Provided by : MorgueFile. Located at : http://mrg.bz/ynkIUa . License : All Rights Reserved . License Terms : Free to remix, commercial use, no attribution required. http://www.morguefile.com/license/morguefile
  • Chapter 6 Logic and the Role of Arguments. Authored by : Terri Russ, J.D., Ph.D.. Provided by : Saint Mary's College, Notre Dame, IN. Located at : http://publicspeakingproject.org/psvirtualtext.html . Project : The Public Speaking Project. License : CC BY-NC-ND: Attribution-NonCommercial-NoDerivatives
  • Martha Stewart nrkbeta. Authored by : nrkbeta. Located at : http://commons.wikimedia.org/wiki/File:Martha_Stewart_nrkbeta.jpg . License : CC BY-SA: Attribution-ShareAlike
  • Seat belt BX. Authored by : M.Minderhoud. Located at : http://commons.wikimedia.org/wiki/File:Seat_belt_BX.jpg . License : CC BY-SA: Attribution-ShareAlike
  • Man thinking in a bus. Authored by : IG8. Located at : https://www.flickr.com/photos/ig8/4295549232/ . License : CC BY: Attribution
  • Sharia-Law-Billboard. Authored by : Matt57. Located at : http://commons.wikimedia.org/wiki/File:Sharia-law-Billboard.jpg . License : Public Domain: No Known Copyright
  • Decorative toilet seat. Authored by : Bartux. Located at : http://commons.wikimedia.org/wiki/File:Decorative_toilet_seat.jpg%20 . License : Public Domain: No Known Copyright
  • Image of 1993 World Trade Center bombing. Provided by : Bureau of ATF 1993 Explosives Incident Report. Located at : http://commons.wikimedia.org/wiki/File:WTC_1993_ATF_Commons.jpg . License : Public Domain: No Known Copyright
  • Material Detail: Critical Thinking: Analysis and Evaluation of Argument

Material Detail

Critical Thinking: Analysis and Evaluation of Argument

Critical Thinking: Analysis and Evaluation of Argument

It is our hope that the successful student who completes a class using all or some of this text will have improved skills with the application inside the discipline of philosophy, but also with application to work in other disciplines within academia. Our ultimate goal, however, is to help people develop techniques that support curiosity, open-mindedness, and an ability to collaborate successfully with others, across differences of experiences...

  • Humanities  / Philosophy

rate this material with 1 stars

  • User Rating
  • Learning Exercises
  • Bookmark Collections   (2) Bookmark Collections
  • Course ePortfolios
  • Accessibility Info
  • Report Broken Link
  • Report as Inappropriate

More about this material

Disciplines with similar materials as critical thinking: analysis and evaluation of argument, people who viewed this also viewed.

"Introduction to Logic and Critical Thinking" icon

Other materials like Critical Thinking: Analysis and Evaluation of Argument

Problems in Argument Analysis and Evaluation icon

Full Description

It is our hope that the successful student who completes a class using all or some of this text will have improved skills with the application inside the discipline of philosophy, but also with application to work in other disciplines within academia. Our ultimate goal, however, is to help people develop techniques that support curiosity, open-mindedness, and an ability to collaborate successfully with others, across differences of experiences and background. Our dream is to help people “put their heads together.”

Edit Comment

Edit comment for material Critical Thinking: Analysis and Evaluation of Argument

Delete Comment

This will delete the comment from the database. This operation is not reversible. Are you sure you want to do it?

Report a Broken Link

Thank you for reporting a broken "Go to Material" link in MERLOT to help us maintain a collection of valuable learning materials.

Would you like to be notified when it's fixed?

Do you know the correct URL for the link?

Link Reported as Broken

Link report failed, report an inappropriate material.

If you feel this material is inappropriate for the MERLOT Collection, please click SEND REPORT, and the MERLOT Team will investigate. Thank you!

Material Reported as Inappropriate

Material report failed, comment reported as inappropriate, leaving merlot.

You are being taken to the material on another site. This will open a new window.

Do not show me this again

Rate this Material

rate this material with 1 stars

Search by ISBN?

It looks like you have entered an ISBN number. Would you like to search using what you have entered as an ISBN number?

Searching for Members?

You entered an email address. Would you like to search for members? Click Yes to continue. If no, materials will be displayed first. You can refine your search with the options on the left of the results page.

Critical thinking definition

critical thinking analysis and evaluation of argument

Critical thinking, as described by Oxford Languages, is the objective analysis and evaluation of an issue in order to form a judgement.

Active and skillful approach, evaluation, assessment, synthesis, and/or evaluation of information obtained from, or made by, observation, knowledge, reflection, acumen or conversation, as a guide to belief and action, requires the critical thinking process, which is why it's often used in education and academics.

Some even may view it as a backbone of modern thought.

However, it's a skill, and skills must be trained and encouraged to be used at its full potential.

People turn up to various approaches in improving their critical thinking, like:

  • Developing technical and problem-solving skills
  • Engaging in more active listening
  • Actively questioning their assumptions and beliefs
  • Seeking out more diversity of thought
  • Opening up their curiosity in an intellectual way etc.

Is critical thinking useful in writing?

Critical thinking can help in planning your paper and making it more concise, but it's not obvious at first. We carefully pinpointed some the questions you should ask yourself when boosting critical thinking in writing:

  • What information should be included?
  • Which information resources should the author look to?
  • What degree of technical knowledge should the report assume its audience has?
  • What is the most effective way to show information?
  • How should the report be organized?
  • How should it be designed?
  • What tone and level of language difficulty should the document have?

Usage of critical thinking comes down not only to the outline of your paper, it also begs the question: How can we use critical thinking solving problems in our writing's topic?

Let's say, you have a Powerpoint on how critical thinking can reduce poverty in the United States. You'll primarily have to define critical thinking for the viewers, as well as use a lot of critical thinking questions and synonyms to get them to be familiar with your methods and start the thinking process behind it.

Are there any services that can help me use more critical thinking?

We understand that it's difficult to learn how to use critical thinking more effectively in just one article, but our service is here to help.

We are a team specializing in writing essays and other assignments for college students and all other types of customers who need a helping hand in its making. We cover a great range of topics, offer perfect quality work, always deliver on time and aim to leave our customers completely satisfied with what they ordered.

The ordering process is fully online, and it goes as follows:

  • Select the topic and the deadline of your essay.
  • Provide us with any details, requirements, statements that should be emphasized or particular parts of the essay writing process you struggle with.
  • Leave the email address, where your completed order will be sent to.
  • Select your prefered payment type, sit back and relax!

With lots of experience on the market, professionally degreed essay writers , online 24/7 customer support and incredibly low prices, you won't find a service offering a better deal than ours.

  • RMIT Australia
  • RMIT Europe
  • RMIT Vietnam
  • RMIT Global
  • RMIT Online
  • Alumni & Giving

RMIT University Library - Learning Lab

  • What will I do?
  • What will I need?
  • Who will help me?
  • About the institution
  • New to university?
  • Studying efficiently
  • Time management
  • Mind mapping
  • Note-taking
  • Reading skills
  • Argument analysis
  • Preparing for assessment

Critical thinking and argument analysis

  • Online learning skills
  • Starting my first assignment
  • Researching your assignment
  • What is referencing?
  • Understanding citations
  • When referencing isn't needed
  • Paraphrasing
  • Summarising
  • Synthesising
  • Integrating ideas with reporting words
  • Referencing with Easy Cite
  • Getting help with referencing
  • Acting with academic integrity
  • Artificial intelligence tools
  • Understanding your audience
  • Writing for coursework
  • Literature review
  • Academic style
  • Writing for the workplace
  • Spelling tips
  • Writing paragraphs
  • Writing sentences
  • Academic word lists
  • Annotated bibliographies
  • Artist statement
  • Case studies
  • Creating effective poster presentations
  • Essays, Reports, Reflective Writing
  • Law assessments
  • Oral presentations
  • Reflective writing
  • Art and design
  • Critical thinking
  • Maths and statistics
  • Sustainability
  • Educators' guide
  • Learning Lab content in context
  • Latest updates
  • Students Alumni & Giving Staff Library

Learning Lab

Getting started at uni, study skills, referencing.

  • When referencing isn't needed
  • Integrating ideas

Writing and assessments

  • Critical reading
  • Poster presentations
  • Postgraduate report writing

Subject areas

For educators.

  • Educators' guide

Content in this section

  • Introduction to critical thinking
  • Finding sources
  • Analysing an argument
  • Logical fallacies
  • Risk Assessment Matrix
  • Engaging critically with social media

Critical thinking is an essential skill for succeeding in your studies, and life. These tutorials will take you from understanding the basics of critical thinking, refining your research skills and finally analysing your sources.

Image: melita/stock.adobe.com

Still can't find what you need?

The RMIT University Library provides study support , one-on-one consultations and peer mentoring to RMIT students.

  • Facebook (opens in a new window)
  • Twitter (opens in a new window)
  • Instagram (opens in a new window)
  • Linkedin (opens in a new window)
  • YouTube (opens in a new window)
  • Weibo (opens in a new window)
  • Copyright © 2024 RMIT University |
  • Accessibility |
  • Learning Lab feedback |
  • Complaints |
  • ABN 49 781 030 034 |
  • CRICOS provider number: 00122A |
  • RTO Code: 3046 |
  • Open Universities Australia

Academia.edu no longer supports Internet Explorer.

To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to  upgrade your browser .

Enter the email address you signed up with and we'll email you a reset link.

  • We're Hiring!
  • Help Center

paper cover thumbnail

Critical Thinking Skills: Identifying, Analysing and Evaluating Arguments

Profile image of Charlene Tan

This chapter introduces key concepts in critical thinking using films and music videos. It focuses on the critical thinking skills needed for the identification, analysis and evaluation of arguments. Based on 12 key questions, readers are introduced to core features of an argument such as “premise”, “conclusion” and “assumption”. The main types of arguments and the criteria for evaluating these arguments are also discussed. Throughout the chapter, films such as A Beautiful Mind, Bowling for Columbine and CSI: Miami, and music videos of John Lennon’s “Imagine”, Britney Spears’ “Toxic”, Michael Jackson’s “Billie Jean” and others are used to illustrate the concepts.

Related Papers

Sandra Dwyer

critical thinking analysis and evaluation of argument

Sabina Saldanha

Khánh Linh Nguyễn

annual meeting of the American Educational …

Michael Preston

Dr Jason J Braithwaite

Peter A Facione

Modern English Teacher

Utamax : Journal of Ultimate Research and Trends in Education

Suleha Ecca

The quantitative study is aimed to know whether documentary films can be applied to foster students&#39; critical thinking skills. This research was conducted in Class X SMA Negeri 10 Sidenreng Rappang, with a total population of 72 students. Samples were drawn from the entire population by taking 2 classes, namely X IPA as an experimental group of 26 students and X IPS as a control group of 25 students. Data were collected through a critical thinking ability test instrument based on critical thinking indicators, then processed with data analysis using the Mean score (average) and SPSS 2.0. Results of the study showed that the experimental group, which were taught to use the documentary, obtain average value is higher compared with the controls group in fostering the ability to think critically, especially on the subjects of Indonesian with developing materials with the opinion of exposition text. Average score results in critical thinking skills with a documentary film is 91.76 wit...

Mark K Felton

The Cinema Journal Teaching Dossier

Ashley Hinck

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

RELATED PAPERS

G. Thomas Goodnight

Gary Richmond

The Nairobi Journal of Literature

susan wandera

Mark Weinstein

Change: The Magazine of Higher Learning

Martin Davies

ANIMA Indonesian Psychological Journal

Ide Bagus Siaputra

Educational Theory

Sophie Haroutunian-Gordon

Ricardo Arieira

Elahe Haghnegahdar

Joseph Borg , Mary Anne Lauri

Hershey H Friedman

Frank Zenker

Noreen Facione , Peter A Facione

Jonathan Heard

patrice chataigner

Roland Case

Tiou Clarke

Carolyn Hartz

Critical Thinking skills

Sobia Ahmed

Rebecca Tallent

Abuguja Hilary

  •   We're Hiring!
  •   Help Center
  • Find new research papers in:
  • Health Sciences
  • Earth Sciences
  • Cognitive Science
  • Mathematics
  • Computer Science
  • Academia ©2024

IMAGES

  1. Critical Thinking

    critical thinking analysis and evaluation of argument

  2. How to Write a Critical Analysis Essay: Examples & Critical Writing Guide

    critical thinking analysis and evaluation of argument

  3. Create your own argument

    critical thinking analysis and evaluation of argument

  4. Argument Evaluation & Analysis Unit Critical Thinking Exercises

    critical thinking analysis and evaluation of argument

  5. 33 Critical Analysis Examples (2024)

    critical thinking analysis and evaluation of argument

  6. 5+ Critical Thinking Strategies for your Essay (2023)

    critical thinking analysis and evaluation of argument

COMMENTS

  1. Critical Thinking

    Critical Thinking. Critical Thinking is the process of using and assessing reasons to evaluate statements, assumptions, and arguments in ordinary situations. ... Argument and Evaluation. Once we are satisfied that a statement is clear, we can begin evaluating it. ... Without further analysis, a positive correlation between these two may lead ...

  2. Critical Thinking Tutorial: How To Analyze an Argument

    Photo by Li-An Lim on Unsplash. How to Analyze an Argument. Learning Goal: In this module, you will learn how to analyze an argument through critical evaluation and analysis of the argument's premises and conclusion. Learning Charter Pursuit: Developing and applying appropriate skills of research, inquiry and knowledge creation and translation. 1

  3. Evaluating arguments and evidence

    Counter-arguments also need to be evidence-based. When reading and researching for your course, it is really important to be able to, firstly, identify arguments, and then to analyse and evaluate them. Generally a statement is an 'argument' if it: If you come across an assertion that is not based on evidence that can reasonably be ...

  4. Introduction to Logic and Critical Thinking

    This is an introductory textbook in logic and critical thinking. The goal of the textbook is to provide the reader with a set of tools and skills that will enable them to identify and evaluate arguments. The book is intended for an introductory course that covers both formal and informal logic. As such, it is not a formal logic textbook, but is closer to what one would find marketed as a ...

  5. Arguments and Critical Thinking

    2.2 Critical thinking about things other than arguments. Many critical thinking textbooks focus exclusively on the analysis and evaluation of arguments. While the centrality of arguments to the art of critical thinking is unquestionable, a strong case can be made that critical thinking has other objectives in addition to appreciating arguments.

  6. Arguments in Context

    Arguments in Context is a comprehensive introduction to critical thinking that covers all the basics in student-friendly language. Intended for use in a semester-long course, the text features classroom-tested examples and exercises that have been chosen to emphasize the relevance and applicability of the subject to everyday life. Three themes are developed as the text proceeds from argument ...

  7. PDF FUNDAMENTALS OF CRITICAL ARGUMENTATION

    Fundamentals of Critical Argumentation presents the basic tools for the iden-tification, analysis, and evaluation of common arguments for beginners. The book teaches by using examples of arguments in dialogues, both in the text itself and in the exercises. Examples of controversial legal, political, and ethi-cal arguments are analyzed.

  8. Critical Thinking Skills Developing Effective Analysis And Argument

    reflective thinking skills, improve their critical analysis and construct arguments more effectively.Written byStella Cottrell, Critical Thinking Skills Developing Effective Analysis And … Critical thinking is a set of techniques. You just need to learn them. So here's your personal toolkit for demystifying critical engagement.

  9. Learning to analyze and critically evaluate ideas, arguments, and

    The critical evaluation of ideas, arguments, and points of view is important for the development of students as autonomous thinkers (1, 2). ... Rather, they must ask students to demonstrate their thinking, including their analysis and critical evaluation of ideas, arguments, and points of view. These assignments ask students to do more than ...

  10. Critical Thinking Worksite: Argument Evaluation

    In the following exercise, you will have the chance to test your context evaluation skills on a few argument/context pairs. When you have completed this exercise, you have finished the Critical Thinking Worksite. The only thing left to do is the final project, which is described in the next section. Exercise Three.

  11. Critical Thinking

    Verifying if evidence/argument support the conclusions . Developing Critical Thinking Skills. Critical thinking is considered a higher order thinking skills, such as analysis, synthesis, deduction, inference, reason, and evaluation. In order to demonstrate critical thinking, you would need to develop skills in;

  12. Critical Thinking: Analysis and Evaluation of Argument

    We would like to show you a description here but the site won't allow us.

  13. Critical Thinking

    A common thread in this smorgasbord of accusations is dissatisfaction with focusing on the logical analysis and evaluation of reasoning and arguments. While these authors acknowledge that such analysis and evaluation is part of critical thinking and should be part of its conceptualization and pedagogy, they insist that it is only a part.

  14. Critical thinking

    Critical thinking is the analysis of available facts, evidence, observations, and arguments in order to form a judgement by the application of rational, skeptical, and unbiased analyses and evaluation. [1] In modern times, the use of the phrase critical thinking can be traced to John Dewey, who used the phrase reflective thinking. [2] The application of critical thinking includes self-directed ...

  15. Argumentation, Evidence Evaluation and Critical Thinking

    Scientific arguments benefit from a critical analysis of the believability of experts and from overcoming uncritical acceptance of authority; for arguments closer to the socio-scientific side of the spectrum, we think that it is a requirement. ... Puig, B. (2012). Argumentation, Evidence Evaluation and Critical Thinking. In: Fraser, B., Tobin ...

  16. Critical Thinking & Reasoning: Logic and the Role of Arguments

    Critical thinkers are open and receptive to all ideas and arguments, even those with which they may disagree. ... Recall that critical thinking is an active mode of thinking. Instead of just receiving messages and accepting them as is, we consider what they are saying. ... analysis, evaluation, inference and interpretation or explanation, and ...

  17. Critical Thinking: Analysis and Evaluation of Argument

    Material Detail: Critical Thinking: Analysis and Evaluation of Argument Material Detail It is our hope that the successful student who completes a class using all or some of this text will have improved skills with the application inside the discipline of philosophy, but also with application to work in other disciplines within academia.

  18. Using Critical Thinking in Essays and other Assignments

    Critical thinking, as described by Oxford Languages, is the objective analysis and evaluation of an issue in order to form a judgement. Active and skillful approach, evaluation, assessment, synthesis, and/or evaluation of information obtained from, or made by, observation, knowledge, reflection, acumen or conversation, as a guide to belief and ...

  19. Critical thinking and argument analysis

    Risk Assessment Matrix. Engaging critically with social media. Critical thinking is an essential skill for succeeding in your studies, and life. These tutorials will take you from understanding the basics of critical thinking, refining your research skills and finally analysing your sources. Image: melita/stock.adobe.com.

  20. Critical thinking skills: Identifying, analysing and evaluating arguments

    This chapter introduces key concepts in critical thinking using films and music videos. It. focuses on the critical thinking skills needed f or the identification, a nalysis and evaluation of ...

  21. Critical Thinking Skills: Identifying, Analysing and Evaluating Arguments

    Introduction This chapter introduces key concepts in critical thinking using films and music videos. It focuses on the critical thinking skills needed for the identification, analysis and evaluation of arguments. Some writers prefer the more precise term, critical reasoning. Arguments are found in the media through the various messages they ...