• PRO Courses Guides New Tech Help Pro Expert Videos About wikiHow Pro Upgrade Sign In
  • EDIT Edit this Article
  • EXPLORE Tech Help Pro About Us Random Article Quizzes Request a New Article Community Dashboard This Or That Game Happiness Hub Popular Categories Arts and Entertainment Artwork Books Movies Computers and Electronics Computers Phone Skills Technology Hacks Health Men's Health Mental Health Women's Health Relationships Dating Love Relationship Issues Hobbies and Crafts Crafts Drawing Games Education & Communication Communication Skills Personal Development Studying Personal Care and Style Fashion Hair Care Personal Hygiene Youth Personal Care School Stuff Dating All Categories Arts and Entertainment Finance and Business Home and Garden Relationship Quizzes Cars & Other Vehicles Food and Entertaining Personal Care and Style Sports and Fitness Computers and Electronics Health Pets and Animals Travel Education & Communication Hobbies and Crafts Philosophy and Religion Work World Family Life Holidays and Traditions Relationships Youth
  • Browse Articles
  • Learn Something New
  • Quizzes Hot
  • Happiness Hub
  • This Or That Game
  • Train Your Brain
  • Explore More
  • Support wikiHow
  • About wikiHow
  • Log in / Sign up
  • Education and Communications
  • Mathematics

How to Solve Math Problems

Last Updated: August 12, 2024 Fact Checked

This article was co-authored by Daron Cam . Daron Cam is an Academic Tutor and the Founder of Bay Area Tutors, Inc., a San Francisco Bay Area-based tutoring service that provides tutoring in mathematics, science, and overall academic confidence building. Daron has over eight years of teaching math in classrooms and over nine years of one-on-one tutoring experience. He teaches all levels of math including calculus, pre-algebra, algebra I, geometry, and SAT/ACT math prep. Daron holds a BA from the University of California, Berkeley and a math teaching credential from St. Mary's College. This article has been fact-checked, ensuring the accuracy of any cited facts and confirming the authority of its sources. This article has been viewed 597,000 times.

Although math problems may be solved in different ways, there is a general method of visualizing, approaching and solving math problems that may help you to solve even the most difficult problem. Using these strategies can also help you to improve your math skills overall. Keep reading to learn about some of these math problem solving strategies.

Understanding the Problem

Step 1 Identify the type of problem.

  • Draw a Venn diagram. A Venn diagram shows the relationships among the numbers in your problem. Venn diagrams can be especially helpful with word problems.
  • Draw a graph or chart.
  • Arrange the components of the problem on a line.
  • Draw simple shapes to represent more complex features of the problem.

Step 5 Look for patterns.

Developing a Plan

Step 1 Figure out what formulas you will need to solve the problem.

Solving the Problem

Step 1 Follow your plan.

Joseph Meyer

When doing practice problems, promptly check to see if your answers are correct. Use worksheets that provide answer keys for instant feedback. Discuss answers with a classmate or find explanations online. Immediate feedback will help you correct your mistakes, avoid bad habits, and advance your learning more quickly.

Expert Q&A

Daron Cam

  • Seek help from your teacher or a math tutor if you get stuck or if you have tried multiple strategies without success. Your teacher or a math tutor may be able to easily identify what is wrong and help you to understand how to correct it. Thanks Helpful 0 Not Helpful 0
  • Keep practicing sums and diagrams. Go through the concept your class notes regularly. Write down your understanding of the methods and utilize it. Thanks Helpful 0 Not Helpful 0

steps for problem solving math

You Might Also Like

Do Math Proofs

  • ↑ Daron Cam. Math Tutor. Expert Interview. 29 May 2020.
  • ↑ http://www.interventioncentral.org/academic-interventions/math/math-problem-solving-combining-cognitive-metacognitive-strategies
  • ↑ http://tutorial.math.lamar.edu/Extras/StudyMath/ProblemSolving.aspx

About This Article

Daron Cam

To solve a math problem, try rewriting the problem in your own words so it's easier to solve. You can also make a drawing of the problem to help you figure out what it's asking you to do. If you're still completely stuck, try solving a different problem that's similar but easier and then use the same steps to solve the harder problem. Even if you can't figure out how to solve it, try to make an educated guess instead of leaving the question blank. To learn how to come up with a solid plan to use to help you solve a math problem, scroll down! Did this summary help you? Yes No

  • Send fan mail to authors

Reader Success Stories

Thakgalo Mokalapa

Thakgalo Mokalapa

Feb 16, 2018

Did this article help you?

steps for problem solving math

Offor Chukwuemeka

May 17, 2018

Anonymous

Jan 21, 2017

Isha Ahmed

May 3, 2018

Do I Have a Dirty Mind Quiz

Featured Articles

Enjoy Your Preteen Years

Trending Articles

Pirate Name Generator

Watch Articles

Make Fluffy Pancakes

  • Terms of Use
  • Privacy Policy
  • Do Not Sell or Share My Info
  • Not Selling Info

wikiHow Tech Help Pro:

Develop the tech skills you need for work and life

Microsoft

Try Math Solver

Key Features

Get step-by-step explanations

Graph your math problems

Graph your math problems

Practice, practice, practice

Practice, practice, practice

Get math help in your language

Get math help in your language

Math Solver

Geogebra math solver.

Get accurate solutions and step-by-step explanations for algebra and other math problems, while enhancing your problem-solving skills!

person with long dark hair sit at a table working at a laptop. 3x+2 and x² equations float in the air signifying that she is working on math problems

Please ensure that your password is at least 8 characters and contains each of the following:

  • a special character: @$#!%*?&

steps for problem solving math

steps for problem solving math

no-js-running-man-logo

Online Equation Solver

Solve linear, quadratic and polynomial systems of equations with wolfram|alpha.

  • Natural Language

More than just an online equation solver

Wolfram|Alpha is a great tool for finding polynomial roots and solving systems of equations. It also factors polynomials, plots polynomial solution sets and inequalities and more.

Solve equations, systems of equations and inequalities with plots and alternate forms

Learn more about:

  • Equation solving

Tips for entering queries

Enter your queries using plain English. To avoid ambiguous queries, make sure to use parentheses where necessary. Here are some examples illustrating how to formulate queries.

  • find roots to quadratic x^2-7x+12
  • plot inequality x^2-7x+12<=0
  • solve {3x-5y==2,x+2y==-1}
  • plot inequality 3x-5y>=2 and x+2y<=-1
  • solve 3x^2-y^2==2 and x+2y^2==5
  • plot 3x^2-y^2>=2 and x+2y^2<=5
  • View more examples

Access instant learning tools

Get immediate feedback and guidance with step-by-step solutions and Wolfram Problem Generator

Step-by-Step solutions for solving equations with informative hints and unlimited Wolfram Problem Generator equation-solving practice problems

  • Step-by-step solutions
  • Wolfram Problem Generator

About solving equations

A value c c is said to be a root of a polynomial p(x) p x if p(c)=0 p c = 0 ..

. This polynomial is considered to have two roots, both equal to 3.

One learns about the "factor theorem," typically in a second course on algebra, as a way to find all roots that are rational numbers. One also learns how to find roots of all quadratic polynomials, using square roots (arising from the discriminant) when necessary. There are more advanced formulas for expressing roots of cubic and quartic polynomials, and also a number of numeric methods for approximating roots of arbitrary polynomials. These use methods from complex analysis as well as sophisticated numerical algorithms, and indeed, this is an area of ongoing research and development.

Systems of linear equations are often solved using Gaussian elimination or related methods. This too is typically encountered in secondary or college math curricula. More advanced methods are needed to find roots of simultaneous systems of nonlinear equations. Similar remarks hold for working with systems of inequalities: the linear case can be handled using methods covered in linear algebra courses, whereas higher-degree polynomial systems typically require more sophisticated computational tools.

How Wolfram|Alpha solves equations

For equation solving, Wolfram|Alpha calls the Wolfram Language's Solve and Reduce functions, which contain a broad range of methods for all kinds of algebra, from basic linear and quadratic equations to multivariate nonlinear systems. In some cases, linear algebra methods such as Gaussian elimination are used, with optimizations to increase speed and reliability. Other operations rely on theorems and algorithms from number theory, abstract algebra and other advanced fields to compute results. These methods are carefully designed and chosen to enable Wolfram|Alpha to solve the greatest variety of problems while also minimizing computation time.

Although such methods are useful for direct solutions, it is also important for the system to understand how a human would solve the same problem. As a result, Wolfram|Alpha also has separate algorithms to show algebraic operations step by step using classic techniques that are easy for humans to recognize and follow. This includes elimination, substitution, the quadratic formula, Cramer's rule and many more.

University of Cambridge logo white

Or search by topic

Number and algebra.

  • Place value and the number system
  • Fractions, decimals, percentages, ratio and proportion
  • Calculations and numerical methods
  • Algebraic expressions, equations and formulae
  • Coordinates, functions and graphs
  • Patterns, sequences and structure
  • Properties of numbers

Geometry and measure

  • 3D geometry, shape and space
  • Transformations and constructions
  • Vectors and matrices
  • Measuring and calculating with units
  • Pythagoras and trigonometry
  • Angles, polygons, and geometrical proof

Probability and statistics

  • Handling, processing and representing data
  • Probability (spec_group)

Working mathematically

  • Thinking mathematically
  • Mathematical mindsets

Advanced mathematics

  • Decision mathematics and combinatorics
  • Advanced probability and statistics

For younger learners

  • Early years foundation stage

Problem Solving

Problem solving and the new curriculum

Problem solving and the new curriculum

Developing a classroom culture that supports a problem-solving approach to mathematics

Developing a classroom culture that supports a problem-solving approach to mathematics

Developing excellence in problem solving with young learners

Developing excellence in problem solving with young learners

Using NRICH Tasks to Develop Key Problem-solving Skills

Using NRICH Tasks to Develop Key Problem-solving Skills

Trial and Improvement at KS1

Trial and Improvement at KS1

Trial and Improvement at KS2

Trial and Improvement at KS2

Working Systematically

Working Systematically - Primary teachers

Number Patterns

Number Patterns

Working Backwards at KS1

Working Backwards at KS1

Working Backwards at KS2

Working Backwards at KS2

Reasoning

Visualising at KS1 - Primary teachers

Visualising at KS2

Visualising at KS2 - Primary teachers

Conjecturing and Generalising at KS1

Conjecturing and Generalising at KS1 - Primary teachers

Conjecturing and Generalising at KS2

Conjecturing and Generalising at KS2 - Primary teachers

High Impact Tutoring Built By Math Experts

Personalized standards-aligned one-on-one math tutoring for schools and districts

Free ready-to-use math resources

Hundreds of free math resources created by experienced math teachers to save time, build engagement and accelerate growth

Free ready-to-use math resources

20 Effective Math Strategies To Approach Problem-Solving 

Katie Keeton

Math strategies for problem-solving help students use a range of approaches to solve many different types of problems. It involves identifying the problem and carrying out a plan of action to find the answer to mathematical problems.  

Problem-solving skills are essential to math in the general classroom and real-life. They require logical reasoning and critical thinking skills. Students must be equipped with strategies to help them find solutions to problems.

This article explores mathematical problem solving strategies, logical reasoning and critical thinking skills to help learners with solving math word problems independently in real-life situations. 

What are problem-solving strategies?

Problem-solving strategies in math are methods students can use to figure out solutions to math problems. Some problem-solving strategies: 

  • Draw a model
  • Use different approaches
  • Check the inverse to make sure the answer is correct

Students need to have a toolkit of math problem-solving strategies at their disposal to provide different ways to approach math problems. This makes it easier to find solutions and understand math better. 

Strategies can help guide students to the solution when it is difficult ot know when to start.

The ultimate guide to problem solving techniques

The ultimate guide to problem solving techniques

Download these ready-to-go problem solving techniques that every student should know. Includes printable tasks for students including challenges, short explanations for teachers with questioning prompts.

20 Math Strategies For Problem-Solving

Different problem-solving math strategies are required for different parts of the problem. It is unlikely that students will use the same strategy to understand and solve the problem. 

Here are 20 strategies to help students develop their problem-solving skills. 

Strategies to understand the problem

Strategies that help students understand the problem before solving it helps ensure they understand: 

  • The context
  • What the key information is
  • How to form a plan to solve it

Following these steps leads students to the correct solution and makes the math word problem easier .

Here are five strategies to help students understand the content of the problem and identify key information. 

1. Read the problem aloud

Read a word problem aloud to help understand it. Hearing the words engages auditory processing. This can make it easier to process and comprehend the context of the situation.

2. Highlight keywords 

When keywords are highlighted in a word problem, it helps the student focus on the essential information needed to solve it. Some important keywords help determine which operation is needed.  For example, if the word problem asks how many are left, the problem likely requires subtraction.  Ensure students highlight the keywords carefully and do not highlight every number or keyword. There is likely irrelevant information in the word problem.

3. Summarize the information

Read the problem aloud, highlight the key information and then summarize the information. Students can do this in their heads or write down a quick summary.  Summaries should include only the important information and be in simple terms that help contextualize the problem.

4. Determine the unknown

A common problem that students have when solving a word problem is misunderstanding what they are solving. Determine what the unknown information is before finding the answer.  Often, a word problem contains a question where you can find the unknown information you need to solve. For example, in the question ‘How many apples are left?’ students need to find the number of apples left over.

5. Make a plan

Once students understand the context of the word problem, have dentified the important information and determined the unknown, they can make a plan to solve it.  The plan will depend on the type of problem. Some problems involve more than one step to solve them as some require more than one answer.  Encourage students to make a list of each step they need to take to solve the problem before getting started.

Strategies for solving the problem 

1. draw a model or diagram.

Students may find it useful to draw a model, picture, diagram, or other visual aid to help with the problem solving process.  It can help to visualize the problem to understand the relationships between the numbers in the problem. In turn, this helps students see the solution.

math problem that needs a problem solving strategy

Similarly, you could draw a model to represent the objects in the problem:

math problem requiring problem solving

2. Act it out

This particular strategy is applicable at any grade level but is especially helpful in math investigation in elementary school . It involves a physical demonstration or students acting out the problem using movements, concrete resources and math manipulatives .  When students act out a problem, they can visualize and contectualize the word problem in another way and secure an understanding of the math concepts.  The examples below show how 1st-grade students could “act out” an addition and subtraction problem:

The problemHow to act out the problem
Gia has 6 apples. Jordan has 3 apples. How many apples do they have altogether?Two students use counters to represent the apples. One student has 6 counters and the other student takes 3. Then, they can combine their “apples” and count the total.
Michael has 7 pencils. He gives 2 pencils to Sarah. How many pencils does Michael have now?One student (“Michael”) holds 7 pencils, the other (“Sarah”) holds 2 pencils. The student playing Michael gives 2 pencils to the student playing Sarah. Then the students count how many pencils Michael is left holding.

3. Work backwards

Working backwards is a popular problem-solving strategy. It involves starting with a possible solution and deciding what steps to take to arrive at that solution.  This strategy can be particularly helpful when students solve math word problems involving multiple steps. They can start at the end and think carefully about each step taken as opposed to jumping to the end of the problem and missing steps in between.

For example,

problem solving math question 1

To solve this problem working backwards, start with the final condition, which is Sam’s grandmother’s age (71) and work backwards to find Sam’s age. Subtract 20 from the grandmother’s age, which is 71.  Then, divide the result by 3 to get Sam’s age. 71 – 20 = 51 51 ÷ 3 = 17 Sam is 17 years old.

4. Write a number sentence

When faced with a word problem, encourage students to write a number sentence based on the information. This helps translate the information in the word problem into a math equation or expression, which is more easily solved.  It is important to fully understand the context of the word problem and what students need to solve before writing an equation to represent it.

5. Use a formula

Specific formulas help solve many math problems. For example, if a problem asks students to find the area of a rug, they would use the area formula (area = length × width) to solve.   Make sure students know the important mathematical formulas they will need in tests and real-life. It can help to display these around the classroom or, for those who need more support, on students’ desks.

Strategies for checking the solution 

Once the problem is solved using an appropriate strategy, it is equally important to check the solution to ensure it is correct and makes sense. 

There are many strategies to check the solution. The strategy for a specific problem is dependent on the problem type and math content involved.

Here are five strategies to help students check their solutions. 

1. Use the Inverse Operation

For simpler problems, a quick and easy problem solving strategy is to use the inverse operation. For example, if the operation to solve a word problem is 56 ÷ 8 = 7 students can check the answer is correct by multiplying 8 × 7. As good practice, encourage students to use the inverse operation routinely to check their work. 

2. Estimate to check for reasonableness

Once students reach an answer, they can use estimation or rounding to see if the answer is reasonable.  Round each number in the equation to a number that’s close and easy to work with, usually a multiple of ten.  For example, if the question was 216 ÷ 18 and the quotient was 12, students might round 216 to 200 and round 18 to 20. Then use mental math to solve 200 ÷ 20, which is 10.  When the estimate is clear the two numbers are close. This means your answer is reasonable. 

3. Plug-In Method

This method is particularly useful for algebraic equations. Specifically when working with variables.  To use the plug-in method, students solve the problem as asked and arrive at an answer. They can then plug the answer into the original equation to see if it works. If it does, the answer is correct.

Problem solving math problem 2

If students use the equation 20m+80=300 to solve this problem and find that m = 11, they can plug that value back into the equation to see if it is correct. 20m + 80 = 300 20 (11) + 80 = 300 220 + 80 = 300 300 = 300 ✓

4. Peer Review

Peer review is a great tool to use at any grade level as it promotes critical thinking and collaboration between students. The reviewers can look at the problem from a different view as they check to see if the problem was solved correctly.   Problem solvers receive immediate feedback and the opportunity to discuss their thinking with their peers. This strategy is effective with mixed-ability partners or similar-ability partners. In mixed-ability groups, the partner with stronger skills provides guidance and support to the partner with weaker skills, while reinforcing their own understanding of the content and communication skills.  If partners have comparable ability levels and problem-solving skills, they may find that they approach problems differently or have unique insights to offer each other about the problem-solving process.

5. Use a Calculator

A calculator can be introduced at any grade level but may be best for older students who already have a foundational understanding of basic math operations. Provide students with a calculator to allow them to check their solutions independently, accurately, and quickly. Since calculators are so readily available on smartphones and tablets, they allow students to develop practical skills that apply to real-world situations.  

Step-by-step problem-solving processes for your classroom

In his book, How to Solve It , published in 1945, mathematician George Polya introduced a 4-step process to solve problems. 

Polya’s 4 steps include:

  • Understand the problem
  • Devise a plan
  • Carry out the plan

Today, in the style of George Polya, many problem-solving strategies use various acronyms and steps to help students recall. 

Many teachers create posters and anchor charts of their chosen process to display in their classrooms. They can be implemented in any elementary, middle school or high school classroom. 

Here are 5 problem-solving strategies to introduce to students and use in the classroom.

CUBES math strategy for problem solving

How Third Space Learning improves problem-solving 

Resources .

Third Space Learning offers a free resource library is filled with hundreds of high-quality resources. A team of experienced math experts carefully created each resource to develop students mental arithmetic, problem solving and critical thinking. 

Explore the range of problem solving resources for 2nd to 8th grade students. 

One-on-one tutoring 

Third Space Learning offers one-on-one math tutoring to help students improve their math skills. Highly qualified tutors deliver high-quality lessons aligned to state standards. 

Former teachers and math experts write all of Third Space Learning’s tutoring lessons. Expertly designed lessons follow a “my turn, follow me, your turn” pedagogy to help students move from guided instruction and problem-solving to independent practice. 

Throughout each lesson, tutors ask higher-level thinking questions to promote critical thinking and ensure students are developing a deep understanding of the content and problem-solving skills.

steps for problem solving math

Problem-solving

Educators can use many different strategies to teach problem-solving and help students develop and carry out a plan when solving math problems. Incorporate these math strategies into any math program and use them with a variety of math concepts, from whole numbers and fractions to algebra. 

Teaching students how to choose and implement problem-solving strategies helps them develop mathematical reasoning skills and critical thinking they can apply to real-life problem-solving.

READ MORE :

  • 8 Common Core math examples
  • Tier 3 Interventions: A School Leaders Guide
  • Tier 2 Interventions: A School Leaders Guide
  • Tier 1 Interventions: A School Leaders Guide

There are many different strategies for problem-solving; Here are 5 problem-solving strategies: • draw a model  • act it out  • work backwards  • write a number sentence • use a formula

Here are 10 strategies for problem-solving: • Read the problem aloud • Highlight keywords • Summarize the information • Determine the unknown • Make a plan • Draw a model  • Act it out  • Work backwards  • Write a number sentence • Use a formula

1. Understand the problem 2. Devise a plan 3. Carry out the plan 4. Look back

Some strategies you can use to solve challenging math problems are: breaking the problem into smaller parts, using diagrams or models, applying logical reasoning, and trying different approaches.

Related articles

Why Student Centered Learning Is Important: A Guide For Educators

Why Student Centered Learning Is Important: A Guide For Educators

13 Effective Learning Strategies: A Guide to Using them in your Math Classroom

13 Effective Learning Strategies: A Guide to Using them in your Math Classroom

Differentiated Instruction: 9 Differentiated Curriculum And Instruction Strategies For Teachers 

Differentiated Instruction: 9 Differentiated Curriculum And Instruction Strategies For Teachers 

5 Math Mastery Strategies To Incorporate Into Your 4th and 5th Grade Classrooms

5 Math Mastery Strategies To Incorporate Into Your 4th and 5th Grade Classrooms

Ultimate Guide to Metacognition [FREE]

Looking for a summary on metacognition in relation to math teaching and learning?

Check out this guide featuring practical examples, tips and strategies to successfully embed metacognition across your school to accelerate math growth.

Privacy Overview

eMathHelp

eMathHelp Math Solver - Free Step-by-Step Calculator

Solve math problems step by step.

At eMathHelp, we provide a wealth of mathematical calculators designed to simplify your daily computations, whether you need to tackle complex equations or perform fundamental math operations.

Our Calculator Categories

Algebra calculator.

Explore our Algebra Calculator, designed to help solve equations, factor polynomials, and more, making algebra more accessible to you.

Geometry Calculator

Our Geometry Calculator is your handy tool for working with triangles.

Pre-Calculus Calculator

Solve pre-calculus problems with our specialized calculator, helping you master foundational math concepts before diving into advanced mathematics.

Calculus Calculator

Improve your calculus knowledge with our Calculus Calculator, which makes complex operations like derivatives, integrals, and differential equations easy.

Linear Algebra Calculator

Perform matrix operations and solve systems of linear equations with our Linear Algebra Calculator, essential for fields like physics and engineering.

Discrete Math Calculator

Tackle discrete mathematical problems confidently with our specialized calculator, ideal for computer science, cryptography, and more.

Probability and Statistics Calculator

Make data analysis a breeze with our Probability and Statistics Calculator, which helps you extract meaningful insights from your data.

Linear Programming Calculator

Optimize linear objective functions easily using our Linear Programming Calculator, which is valuable in resource allocation and economics.

Who Are We?

eMathHelp is a team of dedicated math enthusiasts who believe everyone should have access to powerful mathematical tools. Our mission is to make math more approachable and enjoyable for people of all ages and backgrounds.

Why Choose Our Calculators?

Versatility.

We offer a wide range of calculators for math, including algebraic and calculus tools, making it your one-stop destination for all your mathematical needs.

Our user-friendly interface ensures that even complex calculations can be performed effortlessly, making math accessible to everyone.

Our calculator is designed to provide precise results, helping you save time and eliminate errors.

Diverse Categories of Calculators

We cover various mathematical concepts and topics, from simple to complex.

Our Most Popular Math Calculators

Definite and improper integral calculator.

Solve complex integration problems, including improper integrals, quickly.

Efficiently optimize resources by solving linear programming problems.

Integral Calculator

Easily find antiderivatives by applying different techniques.

Function Calculator

Find the main properties of functions easily.

Discriminant Calculator

Quickly analyze quadratic equations.

What types of calculations can the online math calculator perform?

Our online math calculator offers a wide range of operations to perform. You can use it to solve equations, find derivatives, factor expressions, and more.

Are the online math calculators free to use?

Absolutely! We provide free calculators for math, ensuring you can access powerful mathematical tools without cost. No subscriptions or hidden fees.

How many online math calculators do you offer?

We offer a wide range of online math calculators covering a variety of math topics.

Do the calculators provide step-by-step solutions?

Many of our calculators provide detailed, step-by-step solutions. This will help you better understand the concepts that interest you.

Download on App Store

  • Solve equations and inequalities
  • Simplify expressions
  • Factor polynomials
  • Graph equations and inequalities
  • Advanced solvers
  • All solvers
  • Arithmetics
  • Determinant
  • Percentages
  • Scientific Notation
  • Inequalities

Download on App Store

The equations section of QuickMath allows you to solve and plot virtually any equation or system of equations. In most cases, you can find exact solutions to your equations. Even when this is not possible, QuickMath may be able to give you approximate solutions to almost any level of accuracy you require. It also contains a number of special commands for dealing with quadratic equations.

The Solve command can be uses to solve either a single equation for a single unknown from the basic solve page or to simultaneously solve a system of many equations in many unknowns from the advanced solve page . The advanced command allows you to specify whether you want approximate numerical answers as well as exact ones, and how many digits of accuracy (up to 16) you require. It also allows you to eliminate certain variables from the equations.

Go to the Solve page

The Plot command, from the Graphs section, will plot any function of two variables. In order to plot a single function of x, go to the basic equation plotting page , where you can enter the equation and specify the upper and lower limits on x that you want the graph to be plotted for. The advanced plotting page allows you to plot up to 6 equations on the one graph, each with their own color. It also gives you control over such things as whether or not to show the axes, where the axes should be located, what the aspect ratio of the plot should be and what the range of the dependent variable should be. All equations can be given in the explicit y = f(x) form or the implicit g(x,y) = c form.

Go to the Equation Plotting page

The Quadratics page contains 13 separate commands for dealing with the most common questions concerning quadratics. It allows you to : factor a quadratic function (by two different methods); solve a quadratic equation by factoring the quadratic, using the quadratic formula or by completing the square; rewrite a quadratic function in a different form by completing the square; calculate the concavity, x-intercepts, y-intercept, axis of symmetry and vertex of a parabola; plot a parabola; calculate the discriminant of a quadratic equation and use the discriminant to find the number of roots of a quadratic equation. Each command generates a complete and detailed custom-made explanation of all the steps needed to solve the problem.

Go to the Quadratics page

Introduction to Equations

By an equation we mean a mathematical sentence that states that two algebraic expressions are equal. For example, a (b + c) =ab + ac, ab = ba, and x 2 -1 = (x-1)(x+1) are all equations that we have been using. We recall that we defined a variable as a letter that may be replaced by numbers out of a given set, during a given discussion. This specified set of numbers is sometimes called the replacement set. In this chapter we will deal with equations involving variables where the replacement set, unless otherwise specified, is the set of all real numbers for which all the expressions in the equation are defined.

If an equation is true after the variable has been replaced by a specific number, then the number is called a solution of the equation and is said to satisfy it. Obviously, every solution is a member of the replacement set. The real number 3 is a solution of the equation 2x-1 = x+2, since 2*3-1=3+2. while 1 is a solution of the equation (x-1)(x+2) = 0. The set of all solutions of an equation is called the solution set of the equation.

In the first equation above {3} is the solution set, while in the second example {-2,1} is the solution set. We can verify by substitution that each of these numbers is a solution of its respective equation, and we will see later that these are the only solutions.

A conditional equation is an equation that is satisfied by some numbers from its replacement set and not satisfied by others. An identity is an equation that is satisfied by all numbers from its replacement set.

Example 1 Consider the equation 2x-1 = x+2

The replacement set here is the set of all real numbers. The equation is conditional since, for example, 1 is a member of the replacement set but not of the solution set.

Example 2 Consider the equation (x-1)(x+1) =x 2 -1 The replacement set is the set of all real numbers. From our laws of real numbers if a is any real number, then (a-1)(a+1) = a 2 -1 Therefore, every member of the replacement set is also a member of the solution set. Consequently this equation is an identity.  

steps for problem solving math

The replacement set for this equation is the set of real numbers except 0, since 1/x and (1- x)/x are not defined for x = 0. If a is any real number in the replacement set, then

steps for problem solving math

Math Topics

More solvers.

  • Add Fractions
  • Simplify Fractions

steps for problem solving math

Intermediate Algebra Tutorial 8

  • Use Polya's four step process to solve word problems involving numbers, percents, rectangles, supplementary angles, complementary angles, consecutive integers, and breaking even. 

Whether you like it or not, whether you are going to be a mother, father, teacher, computer programmer, scientist, researcher, business owner, coach, mathematician, manager, doctor, lawyer, banker (the list can go on and on),  problem solving is everywhere.  Some people think that you either can do it or you can't.  Contrary to that belief, it can be a learned trade.  Even the best athletes and musicians had some coaching along the way and lots of practice.  That's what it also takes to be good at problem solving.

George Polya , known as the father of modern problem solving, did extensive studies and wrote numerous mathematical papers and three books about problem solving.  I'm going to show you his method of problem solving to help step you through these problems.

If you follow these steps, it will help you become more successful in the world of problem solving.

Polya created his famous four-step process for problem solving, which is used all over to aid people in problem solving:

Step 1: Understand the problem.  

Step 2:   Devise a plan (translate).  

Step 3:   Carry out the plan (solve).  

Step 4:   Look back (check and interpret).  

Just read and translate it left to right to set up your equation

Since we are looking for a number, we will let 

x = a number

*Get all the x terms on one side

*Inv. of sub. 2 is add 2  

FINAL ANSWER:  The number is 6.

We are looking for two numbers, and since we can write the one number in terms of another number, we will let

x = another number 

ne number is 3 less than another number:

x - 3 = one number

*Inv. of sub 3 is add 3

*Inv. of mult. 2 is div. 2  

FINAL ANSWER:  One number is 90. Another number is 87.

When you are wanting to find the percentage of some number, remember that ‘of ’ represents multiplication - so you would multiply the percent (in decimal form) times the number you are taking the percent of.

We are looking for a number that is 45% of 125,  we will let

x = the value we are looking for

FINAL ANSWER:  The number is 56.25.

We are looking for how many students passed the last math test,  we will let

x = number of students 

FINAL ANSWER: 21 students passed the last math test.

We are looking for the price of the tv before they added the tax,  we will let

x = price of the tv before tax was added. 

*Inv of mult. 1.0825 is div. by 1.0825

FINAL ANSWER: The original price is $500.

Perimeter of a Rectangle = 2(length) + 2(width)

We are looking for the length and width of the rectangle.  Since length can be written in terms of width, we will let

length is 1 inch more than 3 times the width:

1 + 3 w = length

*Inv. of add. 2 is sub. 2

*Inv. of mult. by 8 is div. by 8  

FINAL ANSWER: Width is 3 inches. Length is 10 inches.

Complimentary angles sum up to be 90 degrees.

We are already given in the figure that

x = one angle

5 x = other angle

*Inv. of mult. by 6 is div. by 6

FINAL ANSWER: The two angles are 30 degrees and 150 degrees.

If we let x represent the first integer, how would we represent the second consecutive integer in terms of x ?  Well if we look at 5, 6, and 7 - note that 6 is one more than 5, the first integer. 

In general, we could represent the second consecutive integer by x + 1 .  And what about the third consecutive integer. 

Well, note how 7 is 2 more than 5.  In general, we could represent the third consecutive integer as x + 2.

Consecutive EVEN integers are even integers that follow one another in order.     

If we let x represent the first EVEN integer, how would we represent the second consecutive even integer in terms of x ?   Note that 6 is two more than 4, the first even integer. 

In general, we could represent the second consecutive EVEN integer by x + 2 . 

And what about the third consecutive even integer?  Well, note how 8 is 4 more than 4.  In general, we could represent the third consecutive EVEN integer as x + 4.

Consecutive ODD integers are odd integers that follow one another in order.     

If we let x represent the first ODD integer, how would we represent the second consecutive odd integer in terms of x ?   Note that 7 is two more than 5, the first odd integer. 

In general, we could represent the second consecutive ODD integer by x + 2.

And what about the third consecutive odd integer?  Well, note how 9 is 4 more than 5.  In general, we could represent the third consecutive ODD integer as x + 4.  

Note that a common misconception is that because we want an odd number that we should not be adding a 2 which is an even number.  Keep in mind that x is representing an ODD number and that the next odd number is 2 away, just like 7 is 2 away form 5, so we need to add 2 to the first odd number to get to the second consecutive odd number.

We are looking for 3 consecutive integers, we will let

x = 1st consecutive integer

x + 1 = 2nd consecutive integer

x + 2  = 3rd consecutive integer

*Inv. of mult. by 3 is div. by 3  

FINAL ANSWER: The three consecutive integers are 85, 86, and 87.

We are looking for 3 EVEN consecutive integers, we will let

x = 1st consecutive even integer

x + 2 = 2nd consecutive even integer

x + 4  = 3rd  consecutive even integer

*Inv. of add. 10 is sub. 10  

FINAL ANSWER: The ages of the three sisters are 4, 6, and 8.

In the revenue equation, R is the amount of money the manufacturer makes on a product.

If a manufacturer wants to know how many items must be sold to break even, that can be found by setting the cost equal to the revenue.

We are looking for the number of cd’s needed to be sold to break even, we will let

*Inv. of mult. by 10 is div. by 10

FINAL ANSWER: 5 cd’s.

To get the most out of these, you should work the problem out on your own and then check your answer by clicking on the link for the answer/discussion for that  problem .  At the link you will find the answer as well as any steps that went into finding that answer.

  Practice Problems 1a - 1g: Solve the word problem.

(answer/discussion to 1e)

http://www.purplemath.com/modules/translat.htm This webpage gives you the basics of problem solving and helps you with translating English into math.

http://www.purplemath.com/modules/numbprob.htm This webpage helps you with numeric and consecutive integer problems.

http://www.purplemath.com/modules/percntof.htm This webpage helps you with percent problems.

http://www.math.com/school/subject2/lessons/S2U1L3DP.html This website helps you with the basics of writing equations.

http://www.purplemath.com/modules/ageprobs.htm This webpage goes through examples of age problems,  which are like the  numeric problems found on this page.

Go to Get Help Outside the Classroom found in Tutorial 1: How to Succeed in a Math Class for some more suggestions.

Powerful online learning at your pace

Math Coach's Corner

What IS Problem-Solving?

Ask teachers about problem-solving strategies, and you’re opening a can of worms! Opinions about the “best” way to teach problem-solving are all over the board. And teachers will usually argue for their process quite passionately.

When I first started teaching math over 25 years ago, it was very common to teach “keywords” to help students determine the operation to use when solving a word problem. For example, if you see the word “total” in the problem, you always add. Rather than help students become better problem solvers, the use of keywords actually resulted in students who don’t even feel the need to read and understand the problem–just look for the keywords, pick out the numbers, and do the operation indicated by the keyword.

This post contains affiliate links, which simply means that when you use my link and purchase a product, I receive a small commission. There is no additional cost to you, and I only link to books and products that I personally use and recommend.

Another common strategy for teaching problem-solving is the use of acrostics that students can easily remember to perform the “steps” in problem-solving. CUBES is an example. Just as with keywords, however, students often follow the steps with little understanding. As an example, a common step is to underline or highlight the question. But if you ask students why they are underlining or highlighting the question, they often can’t tell you. The question is , in fact, super important, but they’ve not been told why. They’ve been told to underline the question, so they do.

The problem with both keywords and the rote-step strategies is that both methods try to turn something that is inherently messy into an algorithm! It’s way past time that we leave both methods behind.

First, we need to broaden the definition of problem-solving. Somewhere along the line, problem-solving became synonymous with “word problems.” In reality, it’s so much more. Every one of us solves dozens or hundreds of problems every single day, and most of us haven’t solved a word problem in years. Problem-solving is often described as  figuring out what to do when you don’t  know what to do.  My power went out unexpectedly this morning, and I have work to do. That’s a problem that I had to solve. I had to think about what the problem was, what my options were, and formulate a plan to solve the problem. No keywords. No acrostics. I’m using my phone as a hotspot and hoping my laptop battery doesn’t run out. Problem solved. For now.

If you want to get back to what problem-solving really is, you should consult the work of George Polya. His book, How to Solve It , which was first published in 1945, outlined four principles for problem-solving. The four principles are: understand the problem, devise a plan, carry out the plan, and look back. This document from UC Berkeley’s Mathematics department is a great 4-page overview of Polya’s process. You can probably see that the keyword and rote-steps strategies were likely based on Polya’s method, but it really got out of hand. We need to help students think , not just follow steps.

I created both primary and intermediate posters based on Polya’s principles. Grab your copies for free here !

steps for problem solving math

I would LOVE to hear your comments about problem-solving!

steps for problem solving math

Similar Posts

Daily Number Sense Routines

Daily Number Sense Routines

Are you looking for a good daily routine to develop your students’ number sense? There’s a good chance you already have two great tools in your classroom that can do…

What I’m Reading…Intentional Talk

What I’m Reading…Intentional Talk

“When we press beyond procedural explanations into explanations that include reasoning, we are supporting students in justifying their ideas.” Intentional Talk (Kazemi/Hintz) When you are planning instruction, how often do…

Flexible Number Tasks

Flexible Number Tasks

A sweet friend recently reminded me of an activity I created and shared a number of years ago, and I decided to dust it off and extend it! I love…

understanding the equal sign

Understanding the Equal Sign

Equality is a hugely important concept in math, and that begins with truly understanding the equal sign. Today I’m sharing with you a mini-lesson that can be used for whole-class…

Building Understanding for Multi-Digit Multiplication

Building Understanding for Multi-Digit Multiplication

As we begin to introduce multi-digit multiplication, the tendency is to dive right into the standard algorithm. While the standard algorithm is an efficient strategy, it is very procedural and…

Technology-Based Model Drawing

Technology-Based Model Drawing

It’s yet another great technology find!!  I was just in a training for model drawing, and I was reminded of a GREAT website for learning and teaching model drawing.  If…

Do you tutor teachers?

I do professional development for district and schools, and I have online courses.

You make a great point when you mentioned that teaching students to look for “keywords” is not teaching students to become better problem solvers. I was once guilty of using the CUBES strategy, but have since learned to provide students with opportunity to grapple with solving a problem and not providing them with specified steps to follow.

I think we’ve ALL been there! We learn and we do better. 🙂

Love this article and believe that we can do so much better as math teachers than just teaching key words! Do you have an editable version of this document? We are wanting to use something similar for our school, but would like to tweak it just a bit. Thank you!

I’m sorry, but because of the clip art and fonts I use, I am not able to provide an editable version.

Hi Donna! I am working on my dissertation that focuses on problem-solving. May I use your intermediate poster as a figure, giving credit to you in my citation with your permission, for my section on Polya’s Traditional Problem-Solving Steps? You laid out the process so succinctly with examples that my research could greatly benefit from this image. Thank you in advance!

Absolutely! Good luck with your dissertation!

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

steps for problem solving math

VISIT MY TPT STORE

  • Solutions Integral Calculator Derivative Calculator Algebra Calculator Matrix Calculator More...
  • Graphing Line Graph Exponential Graph Quadratic Graph Sine Graph More...
  • Calculators BMI Calculator Compound Interest Calculator Percentage Calculator Acceleration Calculator More...
  • Geometry Pythagorean Theorem Calculator Circle Area Calculator Isosceles Triangle Calculator Triangles Calculator More...
  • Tools Notebook Groups Cheat Sheets Worksheets Study Guides Practice Verify Solution

Practice

x^{\msquare} \log_{\msquare} \sqrt{\square} \nthroot[\msquare]{\square} \le \ge \frac{\msquare}{\msquare} \cdot \div x^{\circ} \pi
\left(\square\right)^{'} \frac{d}{dx} \frac{\partial}{\partial x} \int \int_{\msquare}^{\msquare} \lim \sum \infty \theta (f\:\circ\:g) f(x)
▭\:\longdivision{▭} \times \twostack{▭}{▭} + \twostack{▭}{▭} - \twostack{▭}{▭} \left( \right) \times \square\frac{\square}{\square}
  • Pre Algebra Order of Operations Factors & Primes Fractions Long Arithmetic Decimals Exponents & Radicals Ratios & Proportions Percent Modulo Number Line Expanded Form Mean, Median & Mode
  • Algebra Equations Inequalities System of Equations System of Inequalities Basic Operations Algebraic Properties Partial Fractions Polynomials Rational Expressions Sequences Power Sums Interval Notation Pi (Product) Notation Induction Prove That Logical Sets Word Problems
  • Pre Calculus Equations Inequalities Scientific Calculator Scientific Notation Arithmetics Complex Numbers Coterminal Angle Polar/Cartesian Simultaneous Equations System of Inequalities Polynomials Rationales Functions Arithmetic & Comp. Coordinate Geometry Plane Geometry Solid Geometry Conic Sections Trigonometry
  • Calculus Derivatives Derivative Applications Limits Integrals Integral Applications Integral Approximation Series ODE Multivariable Calculus Laplace Transform Taylor/Maclaurin Series Fourier Series Fourier Transform
  • Functions Line Equations Functions Arithmetic & Comp. Conic Sections Transformation
  • Linear Algebra Matrices Vectors
  • Trigonometry Identities Proving Identities Trig Equations Trig Inequalities Evaluate Functions Simplify
  • Statistics Mean Geometric Mean Quadratic Mean Average Median Mode Order Minimum Maximum Probability Mid-Range Range Standard Deviation Variance Lower Quartile Upper Quartile Interquartile Range Midhinge Standard Normal Distribution
  • Physics Mechanics
  • Chemistry Chemical Reactions Chemical Properties
  • Finance Simple Interest Compound Interest Present Value Future Value
  • Economics Point of Diminishing Return
  • Conversions Roman Numerals Radical to Exponent Exponent to Radical To Fraction To Decimal To Mixed Number To Improper Fraction Radians to Degrees Degrees to Radians Hexadecimal Scientific Notation Distance Weight Time Volume
  • Pre Algebra
  • One-Step Addition
  • One-Step Subtraction
  • One-Step Multiplication
  • One-Step Division
  • One-Step Decimals
  • Two-Step Integers
  • Two-Step Add/Subtract
  • Two-Step Multiply/Divide
  • Two-Step Fractions
  • Two-Step Decimals
  • Multi-Step Integers
  • Multi-Step with Parentheses
  • Multi-Step Rational
  • Multi-Step Fractions
  • Multi-Step Decimals
  • Solve by Factoring
  • Completing the Square
  • Quadratic Formula
  • Biquadratic
  • Logarithmic
  • Exponential
  • Rational Roots
  • Floor/Ceiling
  • Equation Given Roots
  • Equation Given Points
  • Newton Raphson
  • Substitution
  • Elimination
  • Cramer's Rule
  • Gaussian Elimination
  • System of Inequalities
  • Perfect Squares
  • Difference of Squares
  • Difference of Cubes
  • Sum of Cubes
  • Polynomials
  • Distributive Property
  • FOIL method
  • Perfect Cubes
  • Binomial Expansion
  • Negative Rule
  • Product Rule
  • Quotient Rule
  • Expand Power Rule
  • Fraction Exponent
  • Exponent Rules
  • Exponential Form
  • Logarithmic Form
  • Absolute Value
  • Rational Number
  • Powers of i
  • Complex Form
  • Partial Fractions
  • Is Polynomial
  • Leading Coefficient
  • Leading Term
  • Standard Form
  • Complete the Square
  • Synthetic Division
  • Linear Factors
  • Rationalize Denominator
  • Rationalize Numerator
  • Identify Type
  • Convergence
  • Interval Notation
  • Pi (Product) Notation
  • Boolean Algebra
  • Truth Table
  • Mutual Exclusive
  • Cardinality
  • Caretesian Product
  • Age Problems
  • Distance Problems
  • Cost Problems
  • Investment Problems
  • Number Problems
  • Percent Problems
  • Addition/Subtraction
  • Multiplication/Division
  • Dice Problems
  • Coin Problems
  • Card Problems
  • Pre Calculus
  • Linear Algebra
  • Trigonometry
  • Conversions
x^{\msquare} \log_{\msquare} \sqrt{\square} \nthroot[\msquare]{\square} \le \ge \frac{\msquare}{\msquare} \cdot \div x^{\circ} \pi
\left(\square\right)^{'} \frac{d}{dx} \frac{\partial}{\partial x} \int \int_{\msquare}^{\msquare} \lim \sum \infty \theta (f\:\circ\:g) f(x)
- \twostack{▭}{▭} \lt 7 8 9 \div AC
+ \twostack{▭}{▭} \gt 4 5 6 \times \square\frac{\square}{\square}
\times \twostack{▭}{▭} \left( 1 2 3 - x
▭\:\longdivision{▭} \right) . 0 = + y

Number Line

The Algebra Calculator is a versatile online tool designed to simplify algebraic problem-solving for users of all levels. Here's how to make the most of it:

  • Begin by typing your algebraic expression into the above input field, or scanning the problem with your camera.
  • After entering the equation, click the 'Go' button to generate instant solutions.
  • The calculator provides detailed step-by-step solutions, aiding in understanding the underlying concepts.
  • -x+3\gt 2x+1
  • (x+5)(x-5)\gt 0
  • 10^{1-x}=10^4
  • \sqrt{3+x}=-2
  • 6+11x+6x^2+x^3=0
  • factor\:x^{2}-5x+6
  • simplify\:\frac{2}{3}-\frac{3}{2}+\frac{1}{4}
  • x+2y=2x-5,\:x-y=3
  • How do you solve algebraic expressions?
  • To solve an algebraic expression, simplify the expression by combining like terms, isolate the variable on one side of the equation by using inverse operations. Then, solve the equation by finding the value of the variable that makes the equation true.
  • What are the basics of algebra?
  • The basics of algebra are the commutative, associative, and distributive laws.
  • What are the 3 rules of algebra?
  • The basic rules of algebra are the commutative, associative, and distributive laws.
  • What is the golden rule of algebra?
  • The golden rule of algebra states Do unto one side of the equation what you do to others. Meaning, whatever operation is being used on one side of equation, the same will be used on the other side too.
  • What are the 5 basic laws of algebra?
  • The basic laws of algebra are the Commutative Law For Addition, Commutative Law For Multiplication, Associative Law For Addition, Associative Law For Multiplication, and the Distributive Law.
🌐 Languages EN, ES, PT & more
🏆 Practice Improve your math skills
😍 Step by step In depth solution steps
⭐️ Rating based on 20924 reviews

algebra-calculator

  • High School Math Solutions – Systems of Equations Calculator, Elimination A system of equations is a collection of two or more equations with the same set of variables. In this blog post,...

We want your feedback

Please add a message.

Message received. Thanks for the feedback.

SplashLearn Logo

  • Math for Kids
  • Parenting Resources
  • ELA for Kids
  • Teaching Resources

SplashLearn Blog

How to Teach Number Recognition to Kids in 8 Easy Steps

How to Teach One to One Correspondence To Kids: 4 Easy Steps

How to Teach Odd and Even Numbers in 4 Easy Steps

How to Teach Long Division to Kids in 6 Easy Steps

15 Famous Mathematicians in History That Kids Should Know

8 Types of Preschool Programs for Kids in 2024

6-year-old Developmental Milestones Checklist

How to Prepare a Schedule for Kindergarten With Examples

How to Prepare a Schedule for Preschoolers With Sample

12 Best Funny Short Stories for Kids to Read in 2024

300+ Halloween Words From A-Z for Kids [Free Downloadable]

17 Best Guided Reading Activities for Teachers

190+ Fall Words From A-Z for Kids [Free Downloadable List]

60 Famous Quotes About Reading, Books & Writing for All Ages

What is Reading Assessment? Types & Tools  [Full Guide]

11 Best Coloring Apps for Kids [Android & iOS]

12 Best Reading Bulletin Board Ideas for Your Classroom

15 Fun Summer Bulletin Board Ideas for 2024

13 Best Assessment Tools for Teachers in 2024

12 Best STEM Programs for Kids in 2024

SplashLearn Blog

10 Best Strategies for Solving Math Word Problems

Solving word problem chart

1. Understand the Problem by Paraphrasing

2. identify key information and variables, 3. translate words into mathematical symbols, 4. break down the problem into manageable parts, 5. draw diagrams or visual representations, 6. use estimation to predict answers, 7. apply logical reasoning for unknown variables, 8. leverage similar problems as templates, 9. check answers in the context of the problem, 10. reflect and learn from mistakes.

Have you ever observed the look of confusion on a student’s face when they encounter a math word problem ? It’s a common sight in classrooms worldwide, underscoring the need for effective strategies for solving math word problems . The main hurdle in solving math word problems is not just the math itself but understanding how to translate the words into mathematical equations that can be solved.

Math & ELA | PreK To Grade 5

Kids see fun ., you see real learning outcomes ..

Watch your kids fall in love with math & reading through our scientifically designed curriculum.

Banner Image

Generic advice like “read the problem carefully” or “practice more” often falls short in addressing students’ specific difficulties with word problems. Students need targeted math word problem strategies that address the root of their struggles head-on. 

A Guide on Steps to Solving Word Problems: 10 Strategies 

One of the first steps in tackling a math word problem is to make sure your students understand what the problem is asking. Encourage them to paraphrase the problem in their own words. This means they rewrite the problem using simpler language or break it down into more digestible parts. Paraphrasing helps students grasp the concept and focus on the problem’s core elements without getting lost in the complex wording.

Original Problem: “If a farmer has 15 apples and gives away 8, how many does he have left?”

Paraphrased: “A farmer had some apples. He gave some away. Now, how many apples does he have?”

This paraphrasing helps students identify the main action (giving away apples) and what they need to find out (how many apples are left).

Play these subtraction word problem games in the classroom for free:

Solve 'Take Apart' Scenarios Game

Explore More

steps for problem solving math

Students often get overwhelmed by the details in word problems. Teach them to identify key information and variables essential for solving the problem. This includes numbers , operations ( addition , subtraction , multiplication , division ), and what the question is asking them to find. Highlighting or underlining can be very effective here. This visual differentiation can help students focus on what’s important, ignoring irrelevant details.

  • Encourage students to underline numbers and circle keywords that indicate operations (like ‘total’ for addition and ‘left’ for subtraction).
  • Teach them to write down what they’re solving for, such as “Find: Total apples left.”

Problem: “A classroom has 24 students. If 6 more students joined the class, how many students are there in total?”

Key Information:

  • Original number of students (24)
  • Students joined (6)
  • Looking for the total number of students

Here are some fun addition word problems that your students can play for free:

Solve 'Add To' Scenarios Game

The transition from the language of word problems to the language of mathematics is a critical skill. Teach your students to convert words into mathematical symbols and equations. This step is about recognizing keywords and phrases corresponding to mathematical operations and expressions .

Common Translations:

  • “Total,” “sum,” “combined” → Addition (+)
  • “Difference,” “less than,” “remain” → Subtraction (−)
  • “Times,” “product of” → Multiplication (×)
  • “Divided by,” “quotient of” → Division (÷)
  • “Equals” → Equals sign (=)

Problem: “If one book costs $5, how much would 4 books cost?”

Translation: The word “costs” indicates a multiplication operation because we find the total cost of multiple items. Therefore, the equation is 4 × 5 = $20

Complex math word problems can often overwhelm students. Incorporating math strategies for problem solving, such as teaching them to break down the problem into smaller, more manageable parts, is a powerful approach to overcome this challenge. This means looking at the problem step by step rather than simultaneously trying to solve it. Breaking it down helps students focus on one aspect of the problem at a time, making finding the solution more straightforward.

Problem: “John has twice as many apples as Sarah. If Sarah has 5 apples, how many apples do they have together?”

Steps to Break Down the Problem:

Find out how many apples John has: Since John has twice as many apples as Sarah, and Sarah has 5, John has 5 × 2 = 10

Calculate the total number of apples: Add Sarah’s apples to John’s to find the total,  5 + 10 = 15

By splitting the problem into two parts, students can solve it without getting confused by all the details at once.

Explore these fun multiplication word problem games:

Solve Word Problems Related to Division Game

Diagrams and visual representations can be incredibly helpful for students, especially when dealing with spatial or quantity relationships in word problems. Encourage students to draw simple sketches or diagrams to represent the problem visually. This can include drawing bars for comparison, shapes for geometry problems, or even a simple distribution to better understand division or multiplication problems .

Problem: “A garden is 3 times as long as it is wide. If the width is 4 meters, how long is the garden?”

Visual Representation: Draw a rectangle and label the width as 4 meters. Then, sketch the length to represent it as three times the width visually, helping students see that the length is 4 × 3 = 12

Estimation is a valuable skill in solving math word problems, as it allows students to predict the answer’s ballpark figure before solving it precisely. Teaching students to use estimation can help them check their answers for reasonableness and avoid common mistakes.

Problem: “If a book costs $4.95 and you buy 3 books, approximately how much will you spend?”

Estimation Strategy: Round $4.95 to the nearest dollar ($5) and multiply by the number of books (3), so 5 × 3 = 15. Hence, the estimated total cost is about $15.

Estimation helps students understand whether their final answer is plausible, providing a quick way to check their work against a rough calculation.

Check out these fun estimation and prediction word problem worksheets that can be of great help:

Word Problems on Estimating the Answer Worksheet

When students encounter problems with unknown variables, it’s crucial to introduce them to logical reasoning. This strategy involves using the information in the problem to deduce the value of unknown variables logically. One of the most effective strategies for solving math word problems is working backward from the desired outcome. This means starting with the result and thinking about the steps leading to that result, which can be particularly useful in algebraic problems.

Problem: “A number added to three times itself equals 32. What is the number?”

Working Backward:

Let the unknown number be x.

The equation based on the problem is  x + 3x = 32

Solve for x by simplifying the equation to 4x=32, then dividing by 4 to find x=8.

By working backward, students can more easily connect the dots between the unknown variable and the information provided.

Practicing problems of similar structure can help students recognize patterns and apply known strategies to new situations. Encourage them to leverage similar problems as templates, analyzing how a solved problem’s strategy can apply to a new one. Creating a personal “problem bank”—a collection of solved problems—can be a valuable reference tool, helping students see the commonalities between different problems and reinforcing the strategies that work.

Suppose students have solved a problem about dividing a set of items among a group of people. In that case, they can use that strategy when encountering a similar problem, even if it’s about dividing money or sharing work equally.

It’s essential for students to learn the habit of checking their answers within the context of the problem to ensure their solutions make sense. This step involves going back to the original problem statement after solving it to verify that the answer fits logically with the given information. Providing a checklist for this process can help students systematically review their answers.

Checklist for Reviewing Answers:

  • Re-read the problem: Ensure the question was understood correctly.
  • Compare with the original problem: Does the answer make sense given the scenario?
  • Use estimation: Does the precise answer align with an earlier estimation?
  • Substitute back: If applicable, plug the answer into the problem to see if it works.

Problem: “If you divide 24 apples among 4 children, how many apples does each child get?”

After solving, students should check that they understood the problem (dividing apples equally).

Their answer (6 apples per child) fits logically with the number of apples and children.

Their estimation aligns with the actual calculation.

Substituting back 4×6=24 confirms the answer is correct.

Teaching students to apply logical reasoning, leverage solved problems as templates, and check their answers in context equips them with a robust toolkit for tackling math word problems efficiently and effectively.

One of the most effective ways for students to improve their problem-solving skills is by reflecting on their errors, especially with math word problems. Using word problem worksheets is one of the most effective strategies for solving word problems, and practicing word problems as it fosters a more thoughtful and reflective approach to problem-solving

These worksheets can provide a variety of problems that challenge students in different ways, allowing them to encounter and work through common pitfalls in a controlled setting. After completing a worksheet, students can review their answers, identify any mistakes, and then reflect on them in their mistake journal. This practice reinforces mathematical concepts and improves their math problem solving strategies over time.

3 Additional Tips for Enhancing Word Problem-Solving Skills

Before we dive into the importance of reflecting on mistakes, here are a few impactful tips to enhance students’ word problem-solving skills further:

1. Utilize Online Word Problem Games

A word problem game

Incorporate online games that focus on math word problems into your teaching. These interactive platforms make learning fun and engaging, allowing students to practice in a dynamic environment. Games can offer instant feedback and adaptive challenges, catering to individual learning speeds and styles.

Here are some word problem games that you can use for free:

Solve Word Problems on Fraction-Whole Number Multiplication Game

2. Practice Regularly with Diverse Problems

Word problem worksheet

Consistent practice with a wide range of word problems helps students become familiar with different questions and mathematical concepts. This exposure is crucial for building confidence and proficiency.

Start Practicing Word Problems with these Printable Word Problem Worksheets:

Subtract within 5: Summer Word Problems - Worksheet

3. Encourage Group Work

Solving word problems in groups allows students to share strategies and learn from each other. A collaborative approach is one of the best strategies for solving math word problems that can unveil multiple methods for tackling the same problem, enriching students’ problem-solving toolkit.

Conclusion 

Mastering math word problems is a journey of small steps. Encourage your students to practice regularly, stay curious, and learn from their mistakes. These strategies for solving math word problems are stepping stones to turning challenges into achievements. Keep it simple, and watch your students grow their confidence and skills, one problem at a time.

Frequently Asked Questions (FAQs)

How can i help my students stay motivated when solving math word problems.

Encourage small victories and use engaging tools like online games to make practice fun and rewarding.

What's the best way to teach beginners word problems?

Begin with simple problems that integrate everyday scenarios to make the connection between math and real-life clear and relatable.

How often should students practice math word problems?

Regular, daily practice with various problems helps build confidence and problem-solving skills over time.

steps for problem solving math

  • Pre-Kindergarten
  • Kindergarten

Most Popular

Report Card Comments Samples

76 Best Report Card Comments Samples for Teachers

Riddles for Kids

117 Best Riddles for Kids (With Answers)

Best good vibes quotes

40 Best Good Vibes Quotes to Brighten Your Day

Recent posts.

Letter D Activities

18 Fun Letter D Activities for Kids

Splashlearn coloring page

Math & ELA | PreK To Grade 5

Kids see fun., you see real learning outcomes..

Watch your kids fall in love with math & reading through our scientifically designed curriculum.

Parents, try for free Teachers, use for free

  • Games for Kids
  • Worksheets for Kids
  • Math Worksheets
  • ELA Worksheets
  • Math Vocabulary
  • Number Games
  • Addition Games
  • Subtraction Games
  • Multiplication Games
  • Division Games
  • Addition Worksheets
  • Subtraction Worksheets
  • Multiplication Worksheets
  • Division Worksheets
  • Times Tables Worksheets
  • Reading Games
  • Writing Games
  • Phonics Games
  • Sight Words Games
  • Letter Tracing Games
  • Reading Worksheets
  • Writing Worksheets
  • Phonics Worksheets
  • Sight Words Worksheets
  • Letter Tracing Worksheets
  • Prime Number
  • Order of Operations
  • Long multiplication
  • Place value
  • Parallelogram
  • SplashLearn Success Stories
  • SplashLearn Apps

© Copyright - SplashLearn

Banner Image

Back-to-School Learning Boost!

Turn play into progress., jumpstart learning now.

Explore 4,000+ games and 450+ lesson plans designed to make this school year the best one yet!

Parents, Try for Free Teachers, Use for Free

  • Our Mission

Using Video Projects to Reinforce Learning in Math

A collaborative project can help students deeply explore math concepts, explain problem-solving strategies, and demonstrate their learning.

High school students making videos

Problem-solving, and the creativity that generates and fuels it, lies at the heart of mathematics. Mathematics is essentially about reasoning and much less about memorization or even procedural skills, although both processes are meaningful and useful to simplify and support problem-solving. The National Council of Teachers of Mathematics (NCTM) has consistently advocated to keep problem-solving as the centerpiece of mathematics teaching, and global trends in mathematics education have increasingly emphasized problem-solving and mathematical modeling.

Problem-solving allows students to deepen their conceptual comprehension and appreciate the usefulness and relevance of mathematics. Thus, it generates and fosters interest, engagement, and a deeper understanding of the world around them. Because problem-solving is often used in the mathematics classroom, it’s particularly important to find fresh and interesting ways to attract and maintain students’ engagement.

Video Projects Support Interest in Problem-Solving 

To this end, I assign video projects to my students. In groups of two or three, they solve a set of problems on a topic and then choose one to illustrate, solve, and explain their favorite problem-solving strategy in detail, along with the reasons they chose it. The student-created videos are collected and stored on a Padlet even after I have evaluated them—kept as a reference, keepsake, and support. I have a library of student-created videos that benefit current and future students when they have some difficulties with a topic and associated problems.

Some topics in mathematics are well-suited for applications and problem-solving. These are usually multistep problems that require a combination of strategies and procedural fluency. Typical examples are the motion, work, and mixture problems in algebra, the optimization problems in precalculus or calculus, and related rates problems in calculus.

This collection of student-created videos is about related rates problems (note that some links may not work, as this collection is old). Video activities based on problem-solving can be done at any level of mathematics, as problem-solving is a task in which children are engaged in math class from an early age.

Useful Recording Tools

Some examples of useful recording apps include Screencastify , ScreenPal , iMovie , and QuickTime . Each of them has pros and cons, so I suggest looking at the particular specifications of each tool in terms of the number and length of videos allowed by the free version of those apps. I let my students choose what app they want to use to create their videos—they are generally very familiar with this sort of technology and may be more at ease with one tool over another. All they have to produce is a usable link to their video that will be posted on the common Padlet.

Loom is an intuitive, user-friendly screen recording tool that can record audio, video, browser windows, or entire screens in a Chrome extension, desktop app, or mobile app. You can sign up for a free Loom for Education account; students don’t need an account to watch a teacher’s videos, but they will in order to create their own videos.

Loom’s training module is thorough and includes tutorials, special feature descriptions, and examples. Once you click the Loom icon, there’s a short countdown that precedes the recording. When you stop the recording, a link automatically saves to your clipboard and can be easily shared via email, social media, or an embed code.

The videos will also save to your personal library and can be shared to a team library to make them easily accessible to colleagues. Editing features are quite limited (trimming and changing playback speed), which means you may have to do multiple takes, but teachers can control the settings for comment and download options. 

4 Problem-Solving Strategies

Mathematician George Polya outlined a four-step model in his famous book, How to Solve It . It involves understanding the problem, devising a plan, carrying it out, and finally looking back and reflecting. These are the strategies that my students must demonstrate while creating their videos. 

  • Understand the problem: Students reread the problem carefully, summarize and rewrite the information in mathematical notation, use keyword analysis, draw a picture or a diagram, or even act out the scenario.
  • Devise a plan: Looking for patterns and solving a simpler problem are my favorite approaches, but other ideas—guess-and-check, working backward, eliminating possibilities, using a formula and solving an equation—can work well too, depending on the circumstances. Most often, for good problems, several of these strategies have to be employed at the same time and help support confidence in the solution.
  • Carry out the plan: This is where “show your work” comes in with full force. Communicating their thoughts and ideas is paramount: Students should be systematic, show their thinking in a logical progression, check their work, and be flexible and persistent.
  • Look back and reflect: It’s important to consider which part of the problem was the most challenging and why, which process was most effective, and other strategies that could have worked. This makes for more efficient and deeper learning.

Related rates problems can be intimidating at first, and it is useful for students to write out explicitly the steps and strategies they take to solve the first few problems.

My students come up with a model that follows the previously mentioned steps. It includes labeling the rates with their units and sign, an understanding of the rate they must find, finding at least one equation that binds the variables together, differentiating this equation with respect to time, plugging in the given information, and, finally, writing a short sentence that summarizes their conclusion (including sign and units). 

Benefits of the Video Activity

My students and I have experienced several benefits of this task.

Students are encouraged to communicate mathematically. The importance of communication among learners is also heavily emphasized in the NCTM publication Principles and Standards for School Mathematics .

Student collaboration. Viewing learning as a collective endeavor , rather than an individual competition, helps students develop their social and collaborative skills. When students take joint responsibility for their learning—sharing ideas and resources—it fosters a safe environment where they perceive each other as allies rather than competitors, which increases engagement and academic achievement. 

Problem-solving skills are strengthened. As reported in the Executive Summary of the NCTM Principles and Standards for School Mathematics , when solving mathematical problems, students acquire ways of thinking, habits of persistence and curiosity, and confidence in unfamiliar situations that serve them well beyond the classroom. 

Teachers can clearly see students’ understanding. This includes conceptual understanding, procedural precision, logical and analytical thinking, problem-solving strategies, and clarity of communication.

A sense of belonging in math class is cemented. The experience generates positive, affirmative memories—the goal of social and emotional learning—and “ encourages student focus and motivation, improves relationships between students and teachers, and increases student confidence and success .” It should be promoted, particularly in the STEM disciplines.

 In other words, it’s a keeper.

Microsoft

Similar Problems from Web Search

COMMENTS

  1. Step-by-Step Calculator

    Symbolab is the best step by step calculator for a wide range of physics problems, including mechanics, electricity and magnetism, and thermodynamics. It shows you the steps and explanations for each problem, so you can learn as you go. To solve math problems step-by-step start by reading the problem carefully and understand what you are being ...

  2. Step-by-Step Math Problem Solver

    QuickMath will automatically answer the most common problems in algebra, equations and calculus faced by high-school and college students. The algebra section allows you to expand, factor or simplify virtually any expression you choose. It also has commands for splitting fractions into partial fractions, combining several fractions into one and ...

  3. 3 Easy Ways to Solve Math Problems (with Pictures)

    3. Work on an easier problem. If there is an easier problem available that is similar to the one you are trying to solve, work on the easier problem first. Solving an easier problem that requires some of the same steps and formulas will help you to tackle the more difficult problem. [7] 4.

  4. Microsoft Math Solver

    Online math solver with free step by step solutions to algebra, calculus, and other math problems. ... Type a math problem. Get step-by-step explanations. See how to solve problems and show your work—plus get definitions for mathematical concepts. Graph your math problems. Instantly graph any equation to visualize your function and understand ...

  5. Microsoft Math Solver

    Online math solver with free step by step solutions to algebra, calculus, and other math problems. ... Type a math problem. Quadratic equation { x } ^ { 2 } - 4 x - 5 = 0. Trigonometry. 4 \sin \theta \cos \theta = 2 \sin \theta . Linear equation. y = 3x + 4. Arithmetic. 699 * 533 ... See how to solve problems and show your work—plus get ...

  6. GeoGebra Math Solver

    Get accurate solutions and step-by-step explanations for algebra and other math problems with the free GeoGebra Math Solver. Enhance your problem-solving skills while learning how to solve equations on your own. Try it now!

  7. Mathway

    They do not store directly personal information, but are based on uniquely identifying your browser and internet device. If you do not allow these cookies, you will experience less targeted advertising. Free math problem solver answers your algebra homework questions with step-by-step explanations.

  8. Symbolab

    Symbolab: equation search and math solver - solves algebra, trigonometry and calculus problems step by step ... Solve geometry problems, proofs, and draw geometric shapes Worksheets Generate worksheets for various subjects and topics ... Get step-by-step solutions for any math problem Math Help Tailored For You

  9. Step-by-Step Math Problem Solver

    Solve an equation, inequality or a system. Example: 2x-1=y,2y+3=x. 1: 2: 3: 4: 5: 6: 7: 8: 9: 0., < > ≤: ≥ ^ √: ⬅: : F _ ÷ | (* / ⌫ A: ↻: x: y = +-G

  10. Step-by-Step Solutions

    Starting at $5.00 /month. Get step-by-step answers and hints for your math homework problems. Learn the basics, check your work, gain insight on different ways to solve problems. For chemistry, calculus, algebra, trigonometry, equation solving, basic math and more.

  11. Cymath

    Cymath | Math Problem Solver with Steps | Math Solving App ... \\"Solve

  12. Module 1: Problem Solving Strategies

    In 1945, Pólya published the short book How to Solve It, which gave a four-step method for solving mathematical problems: First, you have to understand the problem. ... This is where math becomes a creative endeavor (and where it becomes so much fun). We will articulate some useful problem solving strategies, but no such list will ever be ...

  13. Solve

    Solve your math problems using our free math solver with step-by-step solutions. Our math solver supports basic math, pre-algebra, algebra, trigonometry, calculus and more. ... Type a math problem. Something went wrong, please try again. Examples. Quadratic equation { x } ^ { 2 } - 4 x - 5 = 0 ...

  14. Equation Solver: Step-by-Step Calculator

    About solving equations. A value c is said to be a root of a polynomial p x if p c =0. The largest exponent of x appearing in p x is called the degree of p. If p x has degree n, then it is well known that there are n roots, once one takes into account multiplicity. To understand what is meant by multiplicity, take, for example, x2 - 6x + 9= x-3 ...

  15. Problem Solving

    Developing excellence in problem solving with young learners Becoming confident and competent as a problem solver is a complex process that requires a range of skills and experience. In this article, Jennie suggests that we can support this process in three principal ways.

  16. 20 Effective Math Strategies For Problem Solving

    Here are five strategies to help students check their solutions. 1. Use the Inverse Operation. For simpler problems, a quick and easy problem solving strategy is to use the inverse operation. For example, if the operation to solve a word problem is 56 ÷ 8 = 7 students can check the answer is correct by multiplying 8 × 7.

  17. eMathHelp Math Solver

    Many of our calculators provide detailed, step-by-step solutions. This will help you better understand the concepts that interest you. eMathHelp: free math calculator - solves algebra, geometry, calculus, statistics, linear algebra, and linear programming problems step by step.

  18. Solve equations and systems with Step-by-Step Math Problem Solver

    An identity is an equation that is satisfied by all numbers from its replacement set. Example 1 Consider the equation 2x-1 = x+2. The replacement set here is the set of all real numbers. The equation is conditional since, for example, 1 is a member of the replacement set but not of the solution set. Example 2 Consider the equation (x-1) (x+1 ...

  19. 10.1: George Polya's Four Step Problem Solving Process

    Is this problem similar to another problem you have solved? Step 2: Devise a Plan: Below are some strategies one might use to solve a problem. Can one (or more) of the following strategies be used? (A strategy is defined as an artful means to an end.) 1.

  20. Intermediate Algebra Tutorial 8

    The following formula will come in handy for solving example 6: Perimeter of a Rectangle = 2 (length) + 2 (width) Example 6 : In a blueprint of a rectangular room, the length is 1 inch more than 3 times the width. Find the dimensions if the perimeter is to be 26 inches. Step 1: Understand the problem.

  21. What IS Problem-Solving?

    Another common strategy for teaching problem-solving is the use of acrostics that students can easily remember to perform the "steps" in problem-solving. CUBES is an example. Just as with keywords, however, students often follow the steps with little understanding. As an example, a common step is to underline or highlight the question.

  22. Algebra Calculator

    The Algebra Calculator is a versatile online tool designed to simplify algebraic problem-solving for users of all levels. Here's how to make the most of it: Begin by typing your algebraic expression into the above input field, or scanning the problem with your camera. After entering the equation, click the 'Go' button to generate instant solutions.

  23. 10 Best Strategies for Solving Math Word Problems

    A Guide on Steps to Solving Word Problems: 10 Strategies. 1. Understand the Problem by Paraphrasing. One of the first steps in tackling a math word problem is to make sure your students understand what the problem is asking. Encourage them to paraphrase the problem in their own words.

  24. Student-Created Math Videos Reinforce Learning

    Understand the problem: Students reread the problem carefully, summarize and rewrite the information in mathematical notation, use keyword analysis, draw a picture or a diagram, or even act out the scenario. Devise a plan: Looking for patterns and solving a simpler problem are my favorite approaches, but other ideas—guess-and-check, working backward, eliminating possibilities, using a ...

  25. 2.1: George Polya's Four Step Problem Solving Process

    Is there enough information? Is there extraneous information? Is this problem similar to another problem you have solved? Step 2: Devise a Plan: Below are some strategies one might use to solve a problem. Can one (or more) of the following strategies be used? (A strategy is defined as an artful means to an end.) 1.

  26. Solve 167x22

    Solve your math problems using our free math solver with step-by-step solutions. Our math solver supports basic math, pre-algebra, algebra, trigonometry, calculus and more. ... x = 5/7 = 0.714 Step by step solution : Step 1 :Solving a Single Variable Equation : 1.1 Solve : 7x-5 = 0 Add 5 to both sides of ... More Items. Share. Copy. Copied to ...