• Open access
  • Published: 15 September 2021

Achieving sustainable development goals from the perspective of solid waste management plans

  • K. M. Elsheekh   ORCID: orcid.org/0000-0001-7257-3201 1 , 2 ,
  • R. R. Kamel 2 ,
  • D. M. Elsherif 1 &
  • A. M. Shalaby 2  

Journal of Engineering and Applied Science volume  68 , Article number:  9 ( 2021 ) Cite this article

17k Accesses

39 Citations

Metrics details

Achieving the Sustainable Development Goals (SDGs) by 2030 ad is one of the challenges and among the cross-cutting issues that countries around the world strive to achieve, despite it is not mandatory, to take control of the various negative environmental, economic, social, and urban impacts that threatened cities, in addition to benefits that are realized from achieving it. The research aims to promote the achievement of Sustainable Development Goals from the perspective of solid waste management (SWM) plans and programs, through analyzing and finding the interrelationship between SWM plans and programs and the related specific targets for each goal, in addition to using experts’ questionnaires to conclude the varying degrees of impact of SWM plans and programs at the level of 17 SDGs, which have been classified into groups, according to the most and the least affected by the SWM plans and programs. Where the goals of “sustainable cities and communities” and “good health and well-being” came in the lead of the goals; however, the goals of “quality education” and “peace, justice, and institutions” came in the tail of the goals that are affected by SWM plans and programs, according to the experts’ opinion.

Introduction

Rapid growth and urbanization processes in developing countries over the past decades have negatively affected cities, such as high rates of poverty and unemployment; problems related to providing infrastructure and social services, in addition to environmental problems and depletion of local resources; and other negative economic, social, and environmental impact be annexed on cities. Therefore, the need for achieving the Sustainable Development Goals appeared in all countries.

SDGs address not only the measurable changes in the well-being of people, economic development of countries, and better environment on the planet but also the means of how these changes shall be induced, in addition to enabling an environment of peace and security and rule of law and conditions for inclusion and participation [ 1 ]. All sectors of development can contribute to achieving SDGs, and every contribution, small or big, will make an impact on our world. Integrated solid waste management (ISWM) is one of the systems that can contribute to achieving 17 SDGs; it can act as a strong driver for achieving a wide range of specific target of goals, whether directly or indirectly.

The research focuses on the role of ISWM in achieving SDGs; it aims to observe the impact of solid waste management plans and programs on achieving the seventeen sustainable development goals and identifying the sustainable development goals that are the most/the least affected by solid waste plans and programs. The methodology of the research is based on two parts, the first part discussing “the concept of integrated solid waste management and “the role of SWM sector in achieving the SDGs” by analyzing the seventeen sustainable development goals from the perspective of solid waste management plans and programs. The second part is arranging the goals from the most affected by solid waste management to the least, depending on structured interviews and experts’ questionnaires for a diverse sample of 30 experts in this field from academics, researchers, and employees in local administrations.

The experts’ questionnaires were designed by 27 questions distributed into three sections; the first section included 8 questions at the level of “policies and general principles of the system,” the second section dealt with 10 questions at the level of “the solid waste management parties,” and the third section dealt with 9 questions at the level of “the technical stages solid waste management.” All the sections included the seventeen sustainable development goals. By transcribing the experts’ answers through 27 questions and by aggregating the number of times each goal was selected during each of the 27 questions and collecting them, it was possible to calculate the number of points collected for each goal through the use of Microsoft Excel. Accordingly, it was possible to arrange the goals from the most affected by solid waste management to the least.

The concept of integrated solid waste management

ISWM is used to refer to the management of the chain of processes, which starts with discharge/storage and extends through the collection, intermediate, treatment, and final disposal of all waste materials [ 2 ]. The core concept of ISWM has been developed out of the experience to address certain common problems with municipal waste management. The international agencies realized that improvements in waste management could not be achieved through a piecemeal approach. An integrated approach was required to reduce the increasing amount of waste that requires the proper collection, treatment, and disposal [ 3 ]. This integrated approach tries to take into account all the dimensions that may affect the solid waste management processes, in addition to taking into account all the actors and influencers on the solid waste management processes.

The role of SWM sector in achieving the SDGs

Considering SDGs, which encompass multiple sectors of urban governance. It can be seen that the interconnectedness and the basic interdependence between it and the solid waste management sector, where environmentally sound and integrated solid waste management programs and plans affect the achievement and improvement of many indicators of SDGs, whether that effect is directly or indirectly. “The environmentally sound management of waste touches on many vital aspects of development,” says Silpa Caza [ 4 ]. The next part deals with how the solid waste management sector affects the achievement of the SDGs, at the level of 17 goals.

Waste pickers and improve poverty rates

While it is known, millions of people in developing countries earn their living from recycling or reusing waste. Reliable statistical data are difficult, as waste pickers are mobile and their population may fluctuate by seasons. For example, Brazil’s official statistical system found over 229,000 people did this work in 2008 [ 5 ]. Many developing countries aim to determine the factors for successful informal sector integration in SWM systems to design measures for the integration of the informal workers in formal waste management strategies, which will have an impact on reducing poverty rates within this sector.

Organic waste and food security

Recycling of organic waste is a real opportunity to provide a large number of organic fertilizers that may improve the quality of crops and raise the rates of agricultural productivity in countries, thus supporting the provision of more safe and nutritious food throughout the year and reducing the proportion of the world population suffering from hunger. Only 13.5% of the world’s waste is recycled, and 5.5% turns into organic fertilizer [ 6 ]. This requires a greater effort to raise those rates and make greater use of them at the level of that goal.

SWM processes and ensuring a healthy life

The medical waste disposal system in developing countries is often subject to defects and faults. Under the pressure of crowded hospitals, workers make mistakes and get infected in return. Adopting the proper management of medical waste inside the health facilities, by incineration or sterilizing and shredding, can greatly reduce the transmission of infection and the transmission of pathogens.

In addition, garbage collectors are still exposed on a daily and continuous basis to the dangers of disease and infection as a result of improper practices of sorting and recycling this hazardous waste, especially many are pregnant and postpartum women within the garbage collectors communities, and to the dangers of premature death as a result of their abuse of sorting processes in the informal system and dealing with waste directly without taking precautionary measures to prevent the transmission of infection and disease.

Therefore, hepatitis C virus (HCV) is one of the most common diseases among litter collectors, which leads to their lives at early ages. Figure 1 shows a comparison between the population in Manshiyat Nasser (one of the largest garbage collectors communities in Egypt) and Greater Cairo by age groups. The available data indicate that the age group over 50 years old in Manshiyat Nasser is much lower compared to Greater Cairo, where the percentage in the Nasser facility is 8.4%, while the Cairo governorate is 14.3%, according to the Central Agency for Public Mobilization and Statistics [ 7 ], which reflects the low average age in the region. This confirms that the proper management of solid waste collection and sorting processes has a great impact on reducing disease rates.

figure 1

The population in Manshiyat Nasser and Greater Cairo by age groups [the author]

Ensuring quality education for garbage collector communities

Looking at the garbage collectors’ communities in most developing countries, it can be seen the use of children significantly throughout the work system, which increases the cases of illiteracy, and children drop out of education in exchange for the temptations of financial return. As in Manshiyat Nasser, which represents one of the largest garbage collectors’ communities in Egypt, statistics indicate that the level of education in it is much lower if compared to Cairo, where the illiteracy rate in Manshiyat Nasser is 52%, while in Cairo it is 24.2%, according to the Central Agency for Public Mobilization and Statistics [ 7 ]. The illiteracy rate among females in Manshiyat Nasser is 59.6%, while in Cairo, it reaches 30.6% for males; the illiteracy rate in Manshiyat Nasser stands at 45.1%, while in Cairo governorate, it reaches 18.2% [ 7 ]. Figure 2 illustrates an approach between the ratios of the education in Manshiyat Nasser and Greater Cairo.

figure 2

Educational levels ratios in Greater Cairo and Manshiyat Nasser [the author]

The previous data can be interpreted as an indication of the increasing rates of dropout from education with the advancement of age in one of the largest garbage collector communities in Egypt as a result of work requirements and the rise of child labor within the profession. The reduction of child labor and the provision of technical and vocational education for them, especially in developing countries, supports enrollment opportunities. In schools and learning for garbage collectors’ communities and family members of those in charge of this profession.

Achieve gender equality and empower all women and girls in SWM

Women and girls are considered one of the main actors in informal SWM as they play a major role in the waste sorting stage, which is one of the most influential stages on health, as most of the sorting processes take place in the informal system inside residential spaces and residential streets [ 8 ], as shown in Fig. 3 that affects women’s health as women spend most of their time inside the home practicing this process, which makes them more vulnerable to serious diseases [ 9 ], in addition to the use of young girls in this process as well, which leads to an increase in the educational dropout rate among girls. This confirms the importance of the efforts made by civil organizations in Egypt such as the association for the Protection of the Environment (APE) and Youth Spirit Association (YSA) to spread awareness of the importance of adopting proper practices for sorting solid waste, as well as providing proper job opportunities based on solid waste recycling directed at women and girls and providing medical assistance to women who got infected, in addition to the inclusion of young girls in recycling schools that allow them to practice recycling for a paid fee while ensuring their continuation in the educational system.

figure 3

Women and young girls sorting garbage in Manshiyat Nasser [ 8 ]

Dumping solid waste and provide clean water

Freshwater sources are exposed to pollution from a wide range of sectors, which threatens human health, as well as wildlife as a whole, and water pollutants include plastic garbage as well as invisible chemicals, in addition to direct discharges of factory waste. It ends up in lakes, rivers, streams, and underground water.

One-third of plastic waste ends up in the soil or freshwater. Plastic never degrades, but rather into tiny particles less than 2.5 mm in size known as nano-plastics, which break down further into nanoparticles (less than 0.1 μm in size) and that becomes part of the food chain. Fresh drinking water becomes contaminated with plastic particles, causing various diseases of cancer origin and hormonal disorder s[ 10 ]. For sure, reducing pollution caused by dumping hazardous wastes in or near waterways increases the chances of obtaining higher quality water.

Energy recover from solid waste

The scientific and technical development in dealing with solid waste has led to a review of the tons of waste that the city produces daily, and to look at it as alternative sources of energy. The concept of generating energy from waste is based on chemically treating solid waste to produce energy; waste is currently the third growing renewable energy source worldwide, after solar and wind. It also contributes, with biomass energy, to more than half of the renewable energy used globally [ 11 ]. This is what made many countries of the world strive in research and development and devising plans on a large scale to separate garbage and recycle it to convert it into energy.

Now, due to the tremendous development in the science of solid waste management and a large number of specialists in it, more than half of the garbage is incinerated and converted into liquid or gaseous fuels [ 10 ].

The informal sector in SWM and decent work for all

Informal employment remains a major challenge to the goal of providing decent work for all. In the SWM system, the percentage of informal employment is increasing in developing countries, which operates according to a framework that does not guarantee social insurance or safety standards, which requires improving the working conditions of the informal sector in the SWM system by integrating it within the formal framework of the system.

The utilization of the human resources of the informal sector in the SWM system and its accumulated experience in this field according to a framework that guarantees to improve the work environment and provide opportunities for decent work. It can support the promotion of economic growth by increasing the productivity rates of the several SWM sectors, by investing in solid waste recycling technology and maximizing the economic return by saving in the use of raw materials used in industries and replacing them with solid waste materials in different industries. These activities, industries, and small enterprises that are based on recycling operations of solid waste produce great decent job opportunities for the informal sector.

Recycling projects to stimulate industrialization and foster innovation

Small industries constitute the backbone of industrial development in developing countries [ 12 ], with a relatively small amount of investment and a domestic resource base. Small industries generate a great deal of employment and self-employment to which the SWM sector can contribute. Recycling materials is one of the processes that create opportunities for unlimited industries and small projects that stimulate innovation processes in various fields of industry, which depends on the output of sorting solid waste from plastic, glass, paper, or cloth and other recyclable materials, in addition to making use of organic waste to create opportunities for small projects that depend on the production of compost from well-separated organic waste. All of that can support growth and innovation processes in manufacturing.

Promoting social and economic inclusion for informal SWM communities

SWM sector could contribute to achieving economic and social integration within developing countries and reducing inequalities. As it is divided in many developing countries into two main systems, namely the formal and informal systems, each of them affects the economic growth processes to varying degrees. Therefore, the merger between the formal and informal SWM sectors will support the reduction of social and economic inequalities for all.

Many developing countries are making great efforts and multiple attempts and putting forward new policies to support the merging processes between the two systems because of the great economic and social benefits that this merging will bring. Some governments are trying to allay the concerns of the informal sector about bearing new tax and insurance burdens, as they try to add benefits to enjoy health care in addition to implementing appropriate systems of insurances and pensions in exchange for monthly installments. This enhances the ability to reduce social and economic inequalities within communities.

Sustainable SWM enhancing the quality of life

By looking at the services of SWM, there are two billion people without access to waste collection services globally, and 3 billion people lack controlled waste disposal facilities according to data collected between 2010 and 2018 ad [ 13 ]. This leads to a lack of indicators of quality of life for cities and the sustainability of local communities. Therefore, good practices for SWM through waste reduction, reuse, recycling, and exploitation in generating energy or safe disposal of it are an essential element in sustainable city management and improving the quality of life. “It is impossible to create a sustainable, livable city without rational solid waste management. It is no longer about technical solutions only. There are impacts on climate, health, and safety as well as important social considerations,” Vasquez stresses [ 14 ]. Therefore, there is an urgent need to invest in waste management infrastructure, including the opportunities to convert full landfills into green parks.

SWM and “sustainable consumption and production patterns”

ISWM contains many concepts related to reducing production and controlling consumption patterns such as moving towards the circular economy model which is based on recycling of materials and converting useful waste into resources. That supports the use of fewer natural resources in manufacturing processes. It can also be said that adopting the concept of extended producer responsibility which requires companies to collect and recycle the waste generated from their products is one of the applications of the green circular economy concepts.

In addition to many practices that are being developed to maximize the benefit from the generated solid waste, such as the MSWM Hierarchy (5Rs), which is considered a widely accepted guideline method on what is better for the environment, as it gives top priority to preventing waste generation in the first place then for reuse, recycling, energy recovery, and finally for final disposal. The importance of using the concept of hierarchy for managing solid waste (5Rs) is due to avoiding wasting an important economic value, which is recyclable waste and reducing the rates of environmental pollution.

Solid waste disposal and climate change measures

Greenhouse gasses such as methane emitted from solid waste are a major factor in air pollution and climate change. Many municipal solid waste (MSW) disposal facilities in developing countries are open dumpsites that contribute to air, water, and soil pollution, as well as greenhouse gas emissions. In 2016, 5% of global emissions were generated from solid waste [ 15 ]. This calls for the need to improve solid waste disposal in most parts of the world, as the safe disposal and the reduction of open burning of garbage are one of the most important climate change-related measures.

According to the statistics issued by the World Bank, the world generates 2.01 billion tons of MSW annually, and at least 33% of it is not managed in an environmentally safe manner. Without improvements in the SWM sector, emissions related to solid waste are probably to increase to 2.6 billion tons of carbon dioxide equivalent by 2050 ad [ 16 ]. Environmentally sound management of solid waste will help reduce the spread of carbon dioxide and other greenhouse gasses in the atmosphere.

SWM and “conserve the oceans, seas, and marine resources”

The oceans constitute the largest ecosystem on the planet, and they produce about half of the oxygen we breathe and act as a climate regulator, they also absorb heat from the atmosphere and more than a quarter of the carbon dioxide that man makes, and carbon emissions lead to the accumulation of heat in the oceans and to changes in their chemical composition, which increases acidification. Reducing open burning can limit the diffusion of carbon dioxide. On the other hand, plastic waste is one of the biggest threats to the oceans. Global production of plastic reached more than 300 million tons in 2014. Much of this plastic has ended up in the oceans, where plastic waste accounts for 90% of marine debris, damaging wildlife and harming marine ecosystems [ 17 ]. The environmentally sound management of solid waste and its safe disposal, especially plastics, can reduce damage to the oceans.

SWM impact on land ecosystems

As a result of the rapid urbanization processes and the increase in the population, the solid waste sector is one of the important sectors with a significant impact on the health of ecosystems with their growth rates of waste. One of the aspects of preserving the ecosystems on the earth’s surface is the safe disposal of solid waste. and Adopting an integrated and sustainable SWM system, which takes care of reducing the amount of waste from the source according to a set of concepts related to such as the (3Rs), and (5Rs), in addition to the circular economy model, which are all widely accepted approaches and principles for waste management operations. The importance of using these concepts is due to the reduction of waste production, which supports the reduction of the need for land utilized for the sanitary burying of waste and using a lower amount of land sustainably and the reduction of the impact on the pollution of soil, water, and air.

Integrated SWM and institutional building strengthening

Given the ISWM, the institutional framework depends on delegating and distributing responsibilities and functions between central governments and local administrations, in addition to the partnership with the private sector, civil society organizations, and all actors in the system. This ensures that decisions are made in a manner that is responsive, inclusive, participatory, and representative at all levels. Many developing countries have turned to the institutional framework based on the principle of decentralization because of its potential benefits as a result of its application in the processes of integrated solid waste management, such as improving economic efficiency, protecting local interests, enhancing citizen participation, and ensuring the availability of tools and methods to activate transparency and accountability to ensure that the costs of programs and projects are evaluated and then monitor the service delivery process.

Partnerships between different parties and sectors

The participation of multiple parties in the SWM system is one of the most important points that the system aspires to, as the transformation from the traditional government sector to the government as a partner by adopting multi-lateral partnerships such as the private sector, non-governmental organizations, and the local community has become inevitable and necessary for the success of the SWM system, also establishes partnerships with other sectors such as industry and trade. All of that is a result of the government sector in developing countries’ realization of its limited ability alone to meet the increasing demand for SWM services. And its need to benefit from the local and foreign experiences of the private sector, ensure the utilization of the human capital and the accumulated experiences of the informal sector, and the inclusion of the local community in identifying the actual needs and evaluating the services provided to it, all of that to support the improvement of the SWM system’s performance. Partnerships with donors also provide opportunities to support the system technically and financially. This supports the achievement of goal 17 by making use of the experiences gained from partnerships and their resource mobilization strategies.

Results and discussion

In view of the Egyptian case and its similarity with developing countries with regard to the solid waste management systems, the research committed to monitoring the impact of SWM plans and programs in developing countries on achieving SDGs through their specific related targets, as the research limitations.

Through the previous section, it became possible to analyze the possibility of achieving the SDGs from the perspective of SWM plans and programs, as it supports the achievement of a wide range of specific targets set within the 17 SDGs, whether directly or indirectly, starting with the development of the natural and urban environment by improving the quality of life for cities, maintaining the sustainability of local communities, reducing the individual negative environmental impacts of cities, and preserving the ecosystems on earth, and its ability to contribute to economic and social development by providing job opportunities. In addition to its support for building transparent institutional frameworks that guarantee partnerships with different sectors and various stakeholders as well. Table 1 deduced the contribution of SWM plans and programs to each of the 17 SDGs.

An expert questionnaire (30 experts) was designed to put the 17 SDGs in the order of the impact of SWM plans and programs on achieving it. The questionnaire included 27 questions distributed into three sections: policies and general principles of the system, the system parties, and the technical stages of the system. Figure 4 shows SDGs and the number of times each goal is chosen as a result of being affected by plans and programs for solid waste management. It is based on analyzing expert answers through 27 questions in the experts’ questionnaire.

figure 4

SDGs and the lead of goals that are affected by SWM programs [the author]

By transcribing the experts’ answers through 27 questions, it is possible to note the following:

Goal 11: Sustainable cities and communities and goal 3: Good health and well-being goal are in the lead goals that are affected by SWM plans and programs.

Then, comes the second stage goal 9: Industry and innovation, goal 8: decent work and economic growth, and goal 12: Responsible consumption and production.

Then, the third stage goal 17: Partnerships for the goals, goal 15: Life on land, and goal 13: Climate action. Then comes the rest of the SDGs.

Goal 4: Quality education and goal 16: Peace, justice and institutions are representing the least affected goals by the SWM plans and programs, according to the experts’ opinion.

Conclusions

It was clear that there was an impact of solid waste plans and programs on achieving SDGs, in various degrees at the level of 17 SDGs, and the greatest impact appeared in the goals related to improving the quality of life and health in cities, in addition to the goals related to providing decent work for all, supporting industrialization and innovation, and improving production and consumption patterns, as well as addressing climate change, enhancing life on earth and supporting partnerships. While some goals appeared less affected by SWM plans and programs, such as the goal related to quality and equitable education for all and the goal related to establishing institutions subject to the issue. The future direction of research should be focusing on developing a framework for achieving goals 3 and 11 (the most affected by SWM) in Egypt from the perspective of SWM plans and programs.

Availability of data and materials

The datasets generated and analyzed during the current study are available in the Google/forms repository [ https://docs.google.com/forms/d/1eDuL-tDf_xxOAKaDIUKiz8Qji6iGonwbQZHCmCgQc68/edit ].

Abbreviations

Solid waste management

  • Sustainable Development Goals

Municipal solid waste

Refuse, reduce, reuse, repurpose, recycle

  • Integrated solid waste management

Municipal solid waste management

Gurbo M (2017) Why are sustainable development goals important? The institute for development of freedom of information (IDFI) published article, available via: . https://idfi.ge/en/why_does_sdgs_matter . Accessed 1 Mar 2021

Google Scholar  

Starovoytova D (2018), Solid waste management at a university campus (part 1/10): comprehensive-review on legal framework and background to waste management, at a global context, online published paper, J Environ Earth Sci, 8, no.4, p.71. Available via: https://www.researchgate.net/publication/328747778_Legal_Framework_and_Background_to_Solid_Waste_Management . Accessed 1 Mar 2021

Memon MA (2010) Integrated solid waste management based on the 3R approach. J Mater Cycles Waste Manag:7 Available via: https://www.researchgate.net/publication/225707470_Integrated_solid_waste_management_based_on_the_3R_approach . Accessed 1 Mar 2021

Kaza S, Yao LC, Bhada-Tata P, Van Woerden F (2018) What a waste 2.0: a global snapshot of solid waste management to 2050, published book, urban development. World bank, Washington, DC Available via: https://www.worldbank.org/en/news/immersive-story/2018/09/20/what-a-waste-an-updated-look-into-the-future-of-solid-waste-management . Accessed 1 Mar 2021

Book   Google Scholar  

Dias S (2011) Integrating informal workers into selective waste collection: the case of Belo Horizonte, Brazil, wiego policy brief (urban policies) no. 4

The world bank (2018), What a waste: an updated look into the future of solid waste management, how much trash is that?, online article, the world bank, IBRD.IDA, available via: https://www.worldbank.org/en/news/immersive-story/2018/09/20/what-a-waste-an-updated-look-into-the-future-of-solid-waste-management . Accessed 1 Mar 2021

Egypt in figures (2013), Central Agency for Public Mobilization and Statistics (CAPMAS), Arab Republic of Egypt, available via: https://www.capmas.gov.eg/ . Accessed 1 Mar 2021

Flavia C, Joos V (2010) Mokattam world’s largest recycling hub, research project, studio-Basel-contemporary city institute, p 136

Elsheekh K (2014) The environmental coexistence aspects in functional communities, analytical study of garbage area in Manshiyat Nasser, unpublished master thesis, Faculty of Engineering, Cairo University, p 145

Lamizana B (2013), Plastic planet: how tiny plastic particles are polluting our soil, un environment program, ecosystems and biodiversity, available via: https://www.unenvironment.org/news-and-stories/story/plastic-planet-how-tiny-plastic-particles-are-polluting-our-soil . Accessed 1 Mar 2021

Ogola JS, Chimuka L, Tshivhase S (2011) Management of municipal solid wastes: a case study in Limpopo province, South Africa. In: Kumar S (ed) Integrated waste management, vol 1. InTech, Rijeka, pp 91–112

Banik S (2018) Small scale industries in India: opportunities and challenges. IJCRT (6, 1):337 Available via: https://www.researchgate.net/publication/323756073_small_scale_industries_in_india_opportunities_and_challenges . Accessed 1 Mar 2021

United Nations (2019) The sustainable development goals report. Department of economic and social affairs, p 45 Available via: https://unstats.un.org/sdgs/report/2019/The-Sustainable-Development-Goals-Report-2019.pdf . Accessed 1 Mar 2021

The World Bank (2018), What a waste: an updated look into the future of solid waste management, online article, the world bank, IBRD.IDA, available via: https://www.worldbank.org/en/news/immersive-story/2018/09/20/what-a-waste-an-updated-look-into-the-future-of-solid-waste-management . Accessed 1 Mar 2021

Kristanto GA, Koven W (2019) Estimating greenhouse gas emissions from municipal solid waste management in Depok, Indonesia. City Environ Interact 4:1 Available via: https://www.sciencedirect.com/science/article/pii/S2590252020300088#bb0030 . Accessed 1 Mar 2021

Article   Google Scholar  

Kaza S, Yao L C, Bhada-Tata P, Van Woerden F (2018), What a waste 2.0: a global snapshot of solid waste management to 2050, published book, urban development;. Washington, DC: World bank, P.xi., available via: https://www.worldbank.org/en/news/immersive-story/2018/09/20/what-a-waste-an-updated-look-into-the-future-of-solid-waste-management . Accessed 1 Mar 2021

Abalansa S, El Mahrad B, Vondolia G K, Icely J, Newton A (2020), The marine plastic litter issue: a social-economic analysis. Sustainability 2020, 12, 8677. Available via: https://doi.org/10.3390/su12208677 . Accessed 1 Mar 2021

World Bank (2018) Atlas of sustainable development goals 2018: world development indicators. World bank, Washington, DC. https://doi.org/10.1596/978-1-4648-1250-7 License: Creative Commons Attri-bution CC BY 3.0 IGO, P.70-76. https://olc.worldbank.org/system/files/Atlas%20of%20Sustainable%20Development%20Goals%20-%20Introduction.pdf . Accessed 1 Mar 2021

Download references

Acknowledgements

Not applicable.

The research received no specific grant from any funding agency in the public, commercial, or notfor-profit sectors.

Author information

Authors and affiliations.

Department of Architecture, Housing and Building National Research Center (HBRC), Giza, Egypt

K. M. Elsheekh & D. M. Elsherif

Department of Architecture, Faculty of Engineering, Cairo University, Giza, Egypt

K. M. Elsheekh, R. R. Kamel & A. M. Shalaby

You can also search for this author in PubMed   Google Scholar

Contributions

KM was a major contributor in writing the manuscript and analyzed and interpreted the experts’ questioner data regarding the impact of solid waste management plans and programs on achieving sustainable development goals. DM contributed to identifying the experts to be interviewed. RR, DM, and AM contributed to the review of the experts’ questioner and the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to K. M. Elsheekh .

Ethics declarations

Ethics approval and consent to participate.

The authors declare that the manuscript is our original work. The ideas, views, innovations, and results presented in the above manuscript are totally ours unless otherwise referenced in the text. Works of others necessary for the development of ideas presented in this manuscript are clearly referenced within the text and accurately listed at its end. Also, the authors declare that they consent for publication.

Competing interests

The authors declare that they have no competing interests.

Additional information

Publisher’s note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ . The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/ ) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Reprints and permissions

About this article

Cite this article.

Elsheekh, K.M., Kamel, R.R., Elsherif, D.M. et al. Achieving sustainable development goals from the perspective of solid waste management plans. J. Eng. Appl. Sci. 68 , 9 (2021). https://doi.org/10.1186/s44147-021-00009-9

Download citation

Received : 16 April 2021

Accepted : 01 July 2021

Published : 15 September 2021

DOI : https://doi.org/10.1186/s44147-021-00009-9

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Decentralized solid waste management
  • Merging informal SWM sector

implementation of solid waste management research paper

Introduction to Solid Waste Management

  • First Online: 01 January 2022

Cite this chapter

implementation of solid waste management research paper

  • Hamidi Abdul Aziz 6 , 7 ,
  • Salem S. Abu Amr 8 ,
  • P. Aarne Vesilind 9 ,
  • Lawrence K. Wang 10 &
  • Yung-Tse Hung 11  

Part of the book series: Handbook of Environmental Engineering ((HEE,volume 23))

1122 Accesses

4 Citations

An increase in population growth, industrial development, and urbanization has led to increasing solid waste generation. Complications associated with solid waste can be dated back to ancient history. The waste produced and collected in an urban area is called municipal solid waste (MSW), mainly associated with the wastes produced from domestic, industrial, commercial, and institutional areas. The amount and composition of waste vary by country. New and effective strategies are generally needed to design urbanization models, and policies are required for effective solid waste management. All aspects of waste storage, collection, transportation, sorting, disposal, and related management are included in solid waste management. It does not stop after collection only, but what needs to be done with the wastes is part of the important aspects of the whole management protocol. Basic waste data are included in this chapter. These include their types, sources, quantity, and compositions. Next, the functional elements of the waste management system are discussed, which among others, includes the aspects of storage, collection, transportation, recovery and processing, composting, thermal treatment, and the final disposal. The legislation related to waste is also discussed, followed by the descriptions of the integrated solid waste management.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save.

  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
  • Available as EPUB and PDF
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

implementation of solid waste management research paper

Strategies for Municipal Solid Waste: Functional Elements, Integrated Management, and Legislative Aspects

implementation of solid waste management research paper

A Review of the Long-Term Viability of Municipal Solid Waste and the Impact It Has on People

implementation of solid waste management research paper

Waste Management: Challenges and Opportunities

Abbreviations.

Air Pollution Control Residues

American Society of Mechanical Engineers

Commercial and industrial

Construction and demolition

Cost-Benefit Analysis

Brominated flame retardants

Chlorofluorocarbons

Hydrochlorofluorocarbons,

Environmental Impact Assessment

Environmental Protection Act

European Union

Humic and fulvic acids

Integrated solid waste management

Life Cycle Assessment

Municipal solid waste

Material Flow Analysis

Pneumatic waste conveyance system

Resource Conservation and Recovery Act

Risk Assessment

Rubber Modified Asphalt

Strategic Environmental Assessment

Socio-economic Assessment

Sustainable Assessment

Solidification/stabilization

Tyre-Derived Aggregate

United Nations Environment Programme

United States

US Environmental Protection Agency

United Kingdom

Volatile fatty acids

American dollar

head/person or individual

USEPA-US Environmental Protection Agency. (2013). Waste-hazardous waste-waste minimisation [Online]. Available from http://www.epa.gov/waste/hazard/wastemin/index.htm . Accessed 22 Mar 2021.

USEPA-US Environmental Protection Agency. (2021a). Criteria for the definition of solid waste and solid and hazardous waste exclusions [Online]. Available from https://www.epa.gov/hw/criteria-definition-solid-waste-and-solid-and-hazardous-waste-exclusions . Accessed 22 Mar 2021.

USEPA-US Environmental Protection Agency. (2020). Advancing sustainable materials management: 2018: Tables and figures , November.

Google Scholar  

HKEPD-Hong Kong Environmental Protection Department. (2020). Monitoring of solid waste in Hong Kong Waste statistics for 2019 , Statistics Unit, Environmental Protection Department, Hong Kong, December 2020.

IPCC Guidelines for National Greenhouse Gas Inventories, the 2019 Refinement was considered in May 2019 during the IPCC’s 49th Session (Kyoto, Japan) and adopted/accepted on 12 May 2019 (Decision – IPCC-XLIX-9 – Adoption and Acceptance of 2019 refinement). Accessed online on 26 July 2020.

OECD-Organisation for Economic Co-operation and Development. (2021). Municipal waste generation and treatment [Online]. Available from. https://stats.oecd.org/Index.aspx?DataSetCode=WSECTOR . Accessed 22 Mar 2021.

Eurostat. (2021). Municipal waste statistics [Online]. Available from https://ec.europa.eu/eurostat/statistics-explained/index.php?%20title=Municipal_waste_statistics&oldid=343958%20 . Accessed 22 Mar 2021.

Kaza, S., Yao, L., Bhada-Tata, P., & Van Woerden, F. (2018). What a waste 2.0: A global snapshot of solid waste management to 2050 (Urban Development Series). World Bank. https://doi.org/10.1596/978-1-4648-1329-0 . License: Creative Commons Attribution CC BY 3.0 IGO.

Book   Google Scholar  

UNEP-United Nations Environment Programme. (2017). Highlights Asia waste management outlook-Summary for decision maker . Nairobi, Kenya.

Abdel-Shafy, H. I., & Mansour, M. S. M. (2018). Solid waste issue: Sources, composition, disposal, recycling, and valorization . Egyptian Journal of Petroleum. (in press).

Buttol, P., Masoni, P., Bonoli, A., Goldoni, S., Belladonna, V., & Cavazzuti, C. (2007). LCA of integrated MSW management systems: Case study of the Bologna District. Waste Management, 27 (8), 1059–1070.

Article   CAS   Google Scholar  

Hui, Z., AiHong, M., YanQiu, L., QingHai, L., & YanGuo, Z. (2014). An overview of characteristics of municipal solid waste fuel in China: Physical, chemical composition and heating value. Renewable and Sustainable Energy Reviews, 36 , 107–122. https://doi.org/10.1016/j.rser.2014.04.024

USEPA-US Environmental Protection Agency. (2021b). Wastes-non-hazardous waste-industrial waste [Online]. Available from https://archive.epa.gov/epawaste/nonhaz/industrial/special/web/html/index-5.html . Accessed 22 Mar 2021.

Pashkevich, M. A. (2017). Chapter 1 – Classification and environmental impact of mine dumps, author links open overlay panel. In Assessment, restoration and reclamation of mining influenced soils (pp. 1–32). Academic.

Collins, R. J., & Ciesielski, S. K. (1994). Recycling and use of waste materials and by-products in highway construction. In National cooperative highway research program synthesis of highway practice 199 . Transportation Research Board.

USEPA-US Environmental Protection Agency (1985). Report to Congress on wastes from the extraction and beneficiation of metallic ores, phosphate rock, asbestos, overburden from uranium mining, and oil shale. Report No. EPA/530-SW-85-033,

Bowdish, L. (2016). Trash to treasure: Changing waste streams to profit streams, U.S (p. 21). Chamber of Commerce Foundation.

Food & Water Watch. (2021). Factory farm map: What’s wrong with factory farms? [Online]. Available from http://www.factoryfarmmap.org/problems/ . Accessed 22 Mar 2021.

Palese, A. M., Persiani, A., D’Adamo, C., Pergola, M., Pastore, V., Sileo, R., Ippolito, G., Lombardi, M. A., & Celano, G. (2020). Composting as manure disposal strategy in small/medium-size livestock farms: Some demonstrations with operative indications. Sustainability, 2020 (12), 3315. https://doi.org/10.3390/su12083315

Article   Google Scholar  

Quest. (2021). [Online]. Available from https://www.questrmg.com/2019/08/08/food-waste-statistics-the-reality-of-food-waste/ . Accessed 22 Mar 2021.

Simão, L., Hotza, D., Raupp-Pereira, F., Labrincha, J. A., & Montedo, O. R. K. (2018). Wastes from pulp and paper mills – A review of generation and recycling alternatives. Cerâmica, 64 (371).

Labfresh. (2021). [Online]. Available from https://labfresh.eu/pages/fashion-waste-index . Accessed 22 Mar 2021.

USEPA-US Environmental Protection Agency. (2021c). Facts and figures about materials, waste and recycling- wood: Material-specific data [Online]. Available from https://www.epa.gov/facts-and-Fig.s-about-materials-waste-and-recycling/wood-material-specific-data . Accessed 22 Mar 2021.

Ed Suttie. (2004). Wood waste management-UK update, final workshop COST Action E22 ‘ Environmental optimisation of wood protection’ , Lisbon-Portugal, 22nd – 23rd March.

FPA. (2019). State of industry report, flexible packaging association , September 2019 [Online]. Available from https://www.packworld.com/home/news/15693115/fpa-publishes-2019-state-of-the-flexible-packaging-industry-report . Accessed 22 Mar 2021.

Scotia Bank. (2021). Global economics|Global Auto Report, January 27, 2021 [Online]. Available from https://www.scotiabank.com/ca/en/about/economics/economics-publications/post.other-publications.autos.global-auto-report.january-27-2021.html . Accessed 22 Mar 2021.

Statisca. (2019). U.S. paper products market value 2015–2025 , Statisca, November 2019 [Online]. Available from https://www.statista.com/statistics/1066665/us-paper-products-market-value/ . Accessed 22 Mar 2021.

Statisca. (2021). Waste statistics in Abu Dhabi Emirates , July 2020 [Online]. Available from https://www.statista.com/statistics/895550/uae-total-solid-waste-generated/ . Accessed 22 Mar 2021.

Poon, C. S., Yu, A. T. W., Wong, A., & Yip, R. (2013). Quantifying the impact of construction waste charging scheme on construction waste management in Hong Kong. Journal of Construction Engineering and Management, 139 (5), 466–479. https://doi.org/10.1061/(ASCE)CO.1943-7862.0000631 . hdl:10397/6714. ISSN:1943-7862.

Wang, Y., Zhang, X., Liao, W., Wu, J., Yang, X., Shui, W., Deng, S., Zhang, Y., Lin, L., Xiao, Y., Yu, X., & Peng, H. (2018). Investigating impact of waste re-use on the sustainability of municipal solid waste (MSW) incineration industry using energy approach: A case study from Sichuan Province, China. Waste Management, 77 , 252–267. https://doi.org/10.1016/j.wasman.2018.04.003

European Commission. (2018). EU construction and demolition waste protocol and guidelines . Internal Market, Industry, Entrepreneurship and SMEs-European Commission [Online]. Available from https://ec.europa.eu/growth/content/eu-construction-and-demolition-waste-protocol-0_en . Accessed 22 Mar 2021.

CIS-Construction Industry Scheme. (2021). GOV.UK [Online]. Available from https://www.gov.uk/what-is-the-construction-industry-scheme . Accessed 22 Mar 2021.

Yu, A., Poon, C., Wong, A., Yip, R., & Jaillon, L. (2013). Impact of construction waste disposal charging scheme on work practices at construction sites in Hong Kong. Waste Management, 33 (1), 138–146. https://doi.org/10.1016/j.wasman.2012.09.023 . hdl:10397/6713. S2CID 20266040.

CIDB. (2008). Guidelines on construction waste management . Construction Industry Development Board Malaysia.

Forti, V., Baldé, C. P., Kuehr, R., & Bel, G. (2020). The Global E-waste Monitor: Quantities, flows and the circular economy potential . United Nations University (UNU)/United Nations Institute for Training and Research (UNITAR)-Co-Hosted SCYCLE Programme, International Telecommunication Union (ITU) & International Solid Waste Association (ISWA), Bonn/Geneva/Rotterdam.

Cho, R. (2018). What can we do about the growing e-waste problem ? General Earth Institute, August 27, 2018 [Online]. Available from https://blogs.ei.columbia.edu/2018/08/27/growing-E-waste-problem/ . Accessed 22 Mar 2021.

Agence nationale pour la gestion des déchets radioactifs. (2020). Édition 2018 de l’inventaire national des matières et déchets radioactifs l’Essentiel 2020 (p. 15). Agence nationale pour la gestion des déchets radioactifs, April 2020.

JAEA – The Japan Atomic Energy Agency. (2019). White paper on nuclear energy 2019 (p. 276). JAEA, August 2020 [Online]. Available from http://www.aec.go.jp/jicst/NC/about/hakusho/index_e.htm . Accessed 22 Mar 2021.

World Nuclear Association. (2021). Storage and disposal of radioactive waste [Online]. Available from https://www.world-nuclear.org/information-library/nuclear-fuel-cycle/nuclear-waste/storage-and-disposal-of-radioactivE-waste.aspx . Accessed 22 Mar 2021.

Marine Conservation Society. (2019). Great British Beach clean 2019 report , November 2019.

Mohajerani, A., Burnett, L., Smith, J. V., Markovski, S., Rodwell, G., Rahman, T., Kurmus, H., Mirzababaei, M., Arulrajah, A., Horpibulsuk, S., et al. (2020). Recycling waste rubber tyres in construction materials and associated environmental considerations: A review. Resources, Conservation & Recycling, 155 , 104679.

Morin, J. E., & Farris, R. J. (2000). Recycling of 100% cross linked rubber powder by high temperature high pressure sintering. Encyclopedia of Polymer Science and Engineering, 37 , 95–101.

ISRI. (2019). Recycling industry yearbook 2019 .

Macie, S., Justyna, K. L., Helena, J., & Adolf, B. (2012). Progress in used tyres management in the European Union: A review. Waste Management, 32 (10), 1742–1751. https://doi.org/10.1016/j.wasman.2012.05.010

Fazli, A., & Rodrigue, D. (2020). Waste rubber recycling: A review on the evolution and properties of thermoplastic elastomers. Materials, 13 , 782. Imbernon, L., & Norvez, S. (2016). From landfilling to vitrimer chemistry in rubber life cycle. European Polymer Journal, 82 , 347–376.

Saha, P. (2018). Rubber recycling: Challenges and developments . Royal Society of Chemistry.

Chatziaras, N., Psomopoulos, C. S., & Themelis, N. J. (2016). Use of waste derived fuels in cement industry: A review. Management of Environmental Quality: An International Journal, 27 (2), 178–193.

Mangi, S. A., Wan Ibrahim, M. H., Jamaluddin, N., Arshad, M. F., & Mudjanarko, S. W. (2019). Recycling of coal ash in concrete as a partial cementitious resource. Resources, 8 , 99. https://doi.org/10.3390/resources8020099

Dwivedi, A., & Jain, M. K. (2014). Fly ash-waste management and overview: A review. Recent Research in Science and Technology, 6 (1), 30–35.

Hannan, J. (2021). Chemical makeup of fly and bottom ash varies significantly; must be analyzed before recycled . ThermoFisher Scientific [Online]. Available from https://www.thermofisher.com/blog/mining/chemical-makeup-of-fly-and-bottom-ash-varies-significantly-must-be-analyzed-before-recycled/#:~:text=The%20European%20Coal%20Combustion%20Products,of%20fly%20ash%20at%2043%25.&text=The%20chemical%20makeup%20of%20fly,of%20the%20coal%20being%20burned . Accessed 22 Mar 2021.

Airquality news.com. (2021). Rule change sought on Air Pollution Control residues [Online]. Available from https://airqualitynews.com/2016/04/14/rule-change-sought-on-air-pollution-control-residues/#:~:text=What%20is%20Air%20Pollution%20Control,to%20a%20non%2Dhazardous%20landfill . Accessed 22 Mar 2021.

Karagiannidis, A., Samaras, P., Kasampalis, T., Perkoulidis, G., Ziogasa, P., & Zorpas, A. (2011). Evaluation of sewage sludge production and utilization in Greece in the frame of integrated energy recovery. Desalination and Water Treatment, 33 , 185–193.

IWA. (2021). Sludge production [Online]. Available from https://www.iwapublishing.com/news/sludge-production . Accessed 22 Mar 2021.

Yang, G., Zhang, G., & Wang, H. (2015). Current state of sludge production, management, treatment and disposal in China. Water Research . https://doi.org/10.1016/j.watres.2015.04.002

Chandler, A. J., Eighmy, T. T., Hartlen, O., Kosson, D., Sawell, S. E., van der Sloot, H., & Vehlow, J. (1997). Municipal solid waste incinerator residues (Studies in Environmental Science, International Ash Working Group) (Vol. 67). Elsevier Science.

UK Department for Business. (2020). Energy and industrial strategy, digest of UK energy statistics: renewable sources of energy (DUKES 6.4) , July.

Tinmaz, E., (2002). Research on integrated solid waste management system in Corlu Town . Master thesis, Istanbul Technical University, Istanbul, Turkey.

Recyclingbin.com. (2021). Recycling facts [Online]. Available from https://www.recyclingbin.com/Recycling-Facts#:~:text=Recycling%20Facts-,Paper,from%20the%20air%20each%20year . Accessed 22 Mar 2021.

Tchobanoglous, G. H., & Theisen, S. V. (1993). Integrated solid waste management: Engineering principle and management issue. International Ed . McGraw – Hill Book Co.

Wilson, D. C., Cowing, M. J., Oelz, B., Scheinberg, A., Stretz, J., Velis, C. A., Rodic, L., Masterson, D., Vilches, R., & Whiteman, A. D. (2014). ‘Wasteaware’ benchmark indicators for integrated sustainable waste management in cities. Waste Management, 35 , 329–342.

Waste Collection Report. ISWA Working Group on Collection and Transportation Technology. (2007) [Online]. Available from https://www.semanticscholar.org/paper/Underground-Automated-Vacuum-Waste-Collection-for-(-Dixit-Rastogi/d8a662a748b2e1d19cb8f1962ef9d44b9ea21325 . Accessed 22 Mar 2021.

Chafer, M., Sole-Mauri, F., Sole, A., Boer, D., & Cabeza, L. F. (2019). Life cycle assessment (LCA) of a pneumatic municipal waste collection system compared to traditional truck collection. Sensitivity study of the influence of the energy source. Journal of Cleaner Production, 231 , 1122–1135. with permission from Elsevier.

Recycling Magazine. (2020). Best practices for construction waste management-trends, analyses, opinions and facts for the recycling industry. Recycling magazine 04/2020 [Online]. Available from https://www.recycling-magazine.com/ausgabe/recycling-magazine-04-2020/ . Accessed 22 Mar 2021.

OECD. (2021). Municipal waste, generation and treatment . OECD-The Organisation for Economic Co-operation and Development [Online]. Available from https://stats.oecd.org/Index.aspx?DataSetCode=MUNW# . Accessed 22 Mar 2021.

Parvez, N., Agrawal, A., & Kumar, A. (2019). Solid waste management on a campus in a developing country: A study of the Indian Institute of Technology Roorkee. Recycling, 2019 (4), 28. https://doi.org/10.3390/recycling4030028

USEPA-US Environmental Protection Agency. (2021d). Sustainable management of food- types of composting and understanding the process [Online]. Available from https://www.epa.gov/sustainable-management-food/types-composting-and-understanding-process . Accessed 22 Mar 2021.

Odeh, A., & Al-Sa’ed, R. (2018). Evaluation of windrow composting pilots for domestic organic waste amended by horse manure and biosolids . In 6th Balkans Joint Conference and Exhibition, 7–9 November 2018, Expocity Albania, Tirana, Albania.

Michaels, T., & Krishnan, K. (2018). Directory of waste to energy facilities . Energy Recovery Council US, October 2018.

Tolvik Consulting Limited, UK. (2020). Energy from waste statistics- 2019, May.

Worldatlas. (2019). Largest landfills, waste sites, and trash dumps in the world [Online]. Available from https://www.worldatlas.com/articles/largest-landfills-waste-sites-and-trash-dumps-in-the-world.html . Accessed 22 Mar 2021.

Eunomia. (2021). Recycling-who really leads the world? Identifying the world’s best municipal waste recyclers [Online]. Available from https://resource.co/sites/default/files/World%20Recycling%20League%20-%20Full%20Report%20-%20FINAL.pdf . Accessed 22 Mar 2021.

Shehzad, A., Bashir, M. J. K., Sethupathi, S., & Lim, J. (2015). An overview of heavily polluted landfill leachate treatment using food waste as an alternative and renewable source of activated carbon. Process Safety and Environmental Protection, 6 , 1–42. https://doi.org/10.1016/j.psep.2015.09.005

Aziz, H. A., & Ramli, S. F. (2018). Recent development in sanitary landfilling and landfill leachate treatment in Malaysia. International Journal of Environmental Engineering, 9 , 201–229. https://doi.org/10.1504/ijee.2018.10018737

Costa, A. M., de Souza Marotta Alfaia, R. G., & Campos, J. C. (2019). Landfill leachate treatment in Brazil – An overview. Journal of Environmental Management, 232 , 110–116. https://doi.org/10.1016/j.jenvman.2018.11.006

Pasalari, H., Farzadkia, M., Gholami, M., & Emamjomeh, M. M. (2019). Management of landfill leachate in Iran: Valorization, characteristics, and environmental approaches. Environmental Chemistry Letters, 17 , 335–348. https://doi.org/10.1007/s10311-018-0804-x

WHO. (2014). Safe management of wastes from health-care activities . WHO.

Emery, A., Davies, A., Griffiths, A., & Williams, K. (2007). Environmental and economic modelling: A case study of municipal solid waste management scenarios in Wales. Resources, Conservation and Recycling, 49 (3), 244–263.

Wang, L. K., & Pereira, N. C. (1980). Handbook of environmental engineering, Volume 2, Solid waste processing and resources recovery (480 pages). The Humana Press.

Hung, Y. T., Wang, L. K., & Shammas, N. K. (2014). Handbook of environment and waste management: Land and groundwater pollution control (Vol. 2, 1091 pages). World Scientific.

Wang, L. K., Wang, M. H. S., Hung, Y. T., & Shammas, N. K. (2016). Natural resources and control processes (493–623 pages). Springer.

Hung, Y. T., Wang, L. K., & Shammas, N. K. (2020). Handbook of environment and waste management: Acid rain and greenhouse gas pollution control (Vol. 3, 770 pages). World Scientific.

Download references

Author information

Authors and affiliations.

School of Civil Engineering, Engineering campus, Universiti Sains Malaysia, Nibong Tebal, Pulau Pinang, Malaysia

Hamidi Abdul Aziz

Solid Waste Management Cluster, Science & Engineering Research Centre (SERC) Engineering Campus, Universiti Sains Malaysia, Nibong Tebal, Pulau Pinang, Malaysia

Faculty of Engineering, Department of Environmental Engineering, Karabuk University, Karabuk, Turkey

Salem S. Abu Amr

Department of Civil Engineering, Duke University, Durham, NC, USA

P. Aarne Vesilind

Lenox Institute of Water Technology, Latham, NY, USA

Lawrence K. Wang

Department of Civil and Environmental Engineering, Cleveland State University, Cleveland, OH, USA

Yung-Tse Hung

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Hamidi Abdul Aziz .

Editor information

Editors and affiliations.

Mu-Hao Sung Wang

Cleveland State University, Cleveland, Ohio, USA

is the United States federal government agency whose mission is to protect human and environmental health.

is the process of examining the anticipated environmental effects of a proposed project from consideration of environmental aspects at the design stage

is an American professional association that promotes the art, science, and practise of multidisciplinary engineering and allied sciences around the world.

is a systematic process that businesses use to analyse which decisions to make.

is a methodology for assessing environmental impacts associated with all the stages of the life cycle of a commercial product, process, or service.

is an analytical method to quantify flows and stocks of materials in a system.

is the analysis of social, cultural, economic, and political conditions of individuals, groups, communities and organizations.

is the process of identifying and analysing potential events that may negatively impact individuals or the environment and making judgements on the tolerability of the risk on the basis of a risk analysis.

is a systematic decision support process aiming to ensure that environmental and possibly other sustainability aspects are considered effectively in policy, plan, and programme making.

is the principal federal law in the United States governing the disposal of solid waste and hazardous waste, which was enacted in 1976.

is the leading environmental authority in the United Nations system.

are short-chain fatty acids composed mainly of C2–C6 carboxylic acids produced in the anaerobic digestion process, which does not need sterilization, additional hydrolysis enzymes, or high-cost pre-treatment step.

is typically a mixture of ash, carbon, and lime.

are mixtures of man-made chemicals that are added to a wide variety of products, including for industrial use, to make them less flammable.

are fully or partly halogenated paraffin hydrocarbons that contain only carbon (C), hydrogen (H), chlorine (Cl), and fluorine (F), produced as a volatile derivative of methane, ethane, and propane.

are compounds containing carbon, hydrogen, chlorine, and fluorine.

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Aziz, H.A., Abu Amr, S.S., Vesilind, P.A., Wang, L.K., Hung, YT. (2021). Introduction to Solid Waste Management. In: Wang, L.K., Wang, MH.S., Hung, YT. (eds) Solid Waste Engineering and Management. Handbook of Environmental Engineering, vol 23. Springer, Cham. https://doi.org/10.1007/978-3-030-84180-5_1

Download citation

DOI : https://doi.org/10.1007/978-3-030-84180-5_1

Published : 01 January 2022

Publisher Name : Springer, Cham

Print ISBN : 978-3-030-84178-2

Online ISBN : 978-3-030-84180-5

eBook Packages : Earth and Environmental Science Earth and Environmental Science (R0)

Share this chapter

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Publish with us

Policies and ethics

  • Find a journal
  • Track your research

Captcha Page

We apologize for the inconvenience...

To ensure we keep this website safe, please can you confirm you are a human by ticking the box below.

If you are unable to complete the above request please contact us using the below link, providing a screenshot of your experience.

https://ioppublishing.org/contacts/

IEEE Account

  • Change Username/Password
  • Update Address

Purchase Details

  • Payment Options
  • Order History
  • View Purchased Documents

Profile Information

  • Communications Preferences
  • Profession and Education
  • Technical Interests
  • US & Canada: +1 800 678 4333
  • Worldwide: +1 732 981 0060
  • Contact & Support
  • About IEEE Xplore
  • Accessibility
  • Terms of Use
  • Nondiscrimination Policy
  • Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest technical professional organization dedicated to advancing technology for the benefit of humanity. © Copyright 2024 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.

Browse Econ Literature

  • Working papers
  • Software components
  • Book chapters
  • JEL classification

More features

  • Subscribe to new research

RePEc Biblio

Author registration.

  • Economics Virtual Seminar Calendar NEW!

IDEAS home

Some searches may not work properly. We apologize for the inconvenience.

Applicability of the Life Cycle Assessment Model in Solid Waste Management in Zimbabwe

  • Author & abstract
  • Related works & more

Corrections

(Midlands State University)

Suggested Citation

Download full text from publisher.

Follow serials, authors, keywords & more

Public profiles for Economics researchers

Various research rankings in Economics

RePEc Genealogy

Who was a student of whom, using RePEc

Curated articles & papers on economics topics

Upload your paper to be listed on RePEc and IDEAS

New papers by email

Subscribe to new additions to RePEc

EconAcademics

Blog aggregator for economics research

Cases of plagiarism in Economics

About RePEc

Initiative for open bibliographies in Economics

News about RePEc

Questions about IDEAS and RePEc

RePEc volunteers

Participating archives

Publishers indexing in RePEc

Privacy statement

Found an error or omission?

Opportunities to help RePEc

Get papers listed

Have your research listed on RePEc

Open a RePEc archive

Have your institution's/publisher's output listed on RePEc

Get RePEc data

Use data assembled by RePEc

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • Int J Environ Res Public Health

Logo of ijerph

Environmental Sustainability Impacts of Solid Waste Management Practices in the Global South

Ismaila rimi abubakar.

1 College of Architecture and Planning, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia

Khandoker M. Maniruzzaman

2 Department of Urban and Regional Planning, College of Architecture and Planning, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia

Umar Lawal Dano

Faez s. alshihri, maher s. alshammari, sayed mohammed s. ahmed, wadee ahmed ghanem al-gehlani.

3 Department of Architecture, College of Architecture and Planning, Imam Abdulrahman Bin Faisal University, Dammam 32141, Saudi Arabia

Tareq I. Alrawaf

4 Department of Landscape Architecture, College of Architecture and Planning, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia

Associated Data

No data were reported in this review article.

Solid waste management (SWM) is one of the key responsibilities of city administrators and one of the effective proxies for good governance. Effective SWM mitigates adverse health and environmental impacts, conserves resources, and improves the livability of cities. However, unsustainable SWM practices, exacerbated by rapid urbanization and financial and institutional limitations, negatively impact public health and environmental sustainability. This review article assesses the human and environmental health impacts of SWM practices in the Global South cities that are the future of global urbanization. The study employs desktop research methodology based on in-depth analysis of secondary data and literature, including official documents and published articles. It finds that the commonplace SWM practices include mixing household and commercial garbage with hazardous waste during storage and handling. While waste storage is largely in old or poorly managed facilities such as storage containers, the transportation system is often deficient and informal. The disposal methods are predominantly via uncontrolled dumping, open-air incinerators, and landfills. The negative impacts of such practices include air and water pollution, land degradation, emissions of methane and hazardous leachate, and climate change. These impacts impose significant environmental and public health costs on residents with marginalized social groups mostly affected. The paper concludes with recommendations for mitigating the public and environmental health risks associated with the existing SWM practices in the Global South.

1. Introduction

Solid waste management (SWM) continues to dominate as a major societal and governance challenge, especially in urban areas overwhelmed by the high rate of population growth and garbage generation. The role of SWM in achieving sustainable development is emphasized in several international development agendas, charters, and visions. For example, sustainable SWM can help meet several United Nations’ Sustainable Development Goals (SDG), such as ensuring clean water and sanitation (SDG6), creating sustainable cities and inclusive communities (SDG11), mitigating climate change (SDG13), protecting life on land (SDG15), and demonstrating sustainable consumption and production patterns (SDG12) ( https://sdgs.un.org/goals , accessed on 26 September 2022). It also fosters a circular urban economy that promotes reductions in the consumption of finite resources, materials reuse and recycling for waste elimination, pollution reduction, cost saving, and green growth

However, coupled with economic growth, improved lifestyle, and consumerism, cities across the globe will continue to face an overwhelming challenge of SWM as the world population is expected to rise to 8 billion by 2025 and to 9.3 billion by 2050, out of which around 70% will be living in urban areas [ 1 , 2 ]. In developing countries, most cities collect only 50–80% of generated waste after spending 20–50% of their budgets, of which 80–95% are spent on collecting and transporting waste [ 3 , 4 ]. Moreover, many low-income countries collect as low as 10% of the garbage generated in suburban areas, which contributes to public health and environmental risks, including higher incidents of diarrhea and acute respiratory infections among people, particularly children, living near garbage dumps [ 5 ]. Obstacles to effective municipal SWM include lack of awareness, technologies, finances, and good governance [ 6 , 7 , 8 ].

Removing garbage from homes and businesses without greater attention to what was then carried out with it has also been the priority of municipal SWM in several cities of developing countries [ 9 ]. In most developing countries, garbage collected from households is disposed of in landfills or dumpsites, the majority of which are projected to reach their capacities within a decade. The unsustainable approach of dumping or burning waste in an open space, usually near poor communities on the city edge, or throwing garbage into water bodies was an acceptable garbage disposal strategy. Similarly, several cities still use old-generation or poorly managed facilities and informal uncontrolled dumping or open-air waste burning. Often, these practices affect marginalized social groups near the disposal sites [ 10 ]. Moreover, this approach poses several sustainability problems, including resource depletion, environmental pollution, and public health problems, such as the spread of communicable diseases.

However, ever since the advent of the environmental movement in the 1960s, there has been a far-reaching appreciation of environmental and public health risks of unsustainable SWM practices. In the 1970s and onward, SWM was a technical issue to be resolved using technology; hence, the emphasis and investments were placed on garbage collection equipment [ 5 ]. Although modern technology can significantly reduce emissions of hazardous substances, by the 1990s, that viewpoint changed when municipalities become unable to evacuate and dispose of garbage effectively without the active involvement of service users and other stakeholders [ 5 ]. The inability of the public sector in the global South to deliver sufficient improvement of SWM, coupled with the pressure from the financial institutions and other donor agencies, led to privatization policies at the end of the decade. However, as privatization failed to provide municipal SWM services to the poor and marginalized communities, the current global thinking on addressing municipal SWM problems is changing.

A more sustainable waste management approach prioritizes practices such as reduced production, waste classifications, reuse, recycling, and energy recovery over the common practices of landfilling, open dumps, and open incineration [ 11 , 12 , 13 ]. This approach, which is still at an early stage but getting increased attention in the Global South, is more inclusive and environment-friendly and has less negative impact on human health and the environment than the common practices [ 14 , 15 , 16 ]. As such, there is a need to assess SWM practices in the Global South and their impacts on environmental and human health because 90% of the expected growth in the urban population by 2050 is expected to happen here. So far, there are a few studies on the impacts of SWM practices on human health and the environment in the global regions.

Therefore, this review article addresses this knowledge gap by assessing the negative impacts of the dominant SWM practices on human and environmental health. Section 2 presents the research methodology. Section 3 reviews the major SWM practices in the Global South and assesses the environmental and public health implications of SWM practices in the Global South cities. While Section 4 discusses the implications of the findings and proffers recommendations that could help authorities to deal with SWM challenges and mitigate public and environmental health risks associated with unsustainable SWM practices, Section 5 concludes the paper.

2. Materials and Methods

The present paper utilizes a desktop research method of collecting and analyzing relevant data from the existing literature, as utilized in some previous studies [ 17 , 18 ]. The method consists of three iterative stages shown in Figure 1 : (a) scoping, (b) collecting relevant literature, and (c) data analysis. Firstly, the scoping stage involves defining and understanding the research problem under investigation and setting the study scope and boundary. The scope of the paper is to explore human and environmental impacts of SWM practices toward policy and practical recommendations for a more sustainable SWM system, with the Global South as the study boundary. This stage also helped identify relevant keywords to search for during the literature review in the second stage.

An external file that holds a picture, illustration, etc.
Object name is ijerph-19-12717-g001.jpg

The flow chart of the research method (Source: [ 18 ] (p. 4)).

The second stage involved identifying and collecting relevant literature from online sources. The researchers utilized Google Scholar and Scopus databases to identify peer-reviewed academic works (peer-reviewed articles, conference proceedings, and books) as well as the gray literature. The literature that satisfied the following three inclusion criteria was identified and downloaded: (1) It is related to the study’s objective; (2) it is in the English language; and (3) it was published within the last twenty years, although some old documents about established concepts and approaches were also accessed. The downloaded gray literature includes newspaper articles, statistics, technical reports, and website contents from international development organizations such as the World Health Organization (WHO), the United Nations, and the World Bank.

In the last stage, the authors organized, analyzed, and synthesized the data collected from the literature. The downloaded works were organized according to the similarity of topics, even though some fit in more than one category. Then, each document was thoroughly examined, and themes concerned with SWM practices and their human and environmental impacts were collated, synthesized, and harmonized. Finally, the themes were summarized in Table A1 , Table A2 and Table A3 (see Appendix A ) and discussed. Implications and recommendations of the findings are then highlighted.

3. Results and Discussion

3.1. solid waste management practices in the global south.

Global municipal solid waste (MSW) generation rose from 1.3 billion tons in 2012 to 2.1 billion tons (0.74 kg/capita/day) as of 2016, which by 2050 is expected to increase by 70% to reach a total of 3.40 billion tons or 1.42 kg/capita/day [ 19 ]. The per capita MSW generation varies among regions and countries. In the EU (European Union), it ranges from 0.3–1.4 kg/capita/day [ 20 ], and in some African cities, the average is 0.78 kg/capita/day [ 21 ]. In Asia, urban areas generate about 760,000 tons of MSW per day, which is expected to increase to 1.8 million tons per day or 26% of the world’s total by 2025, despite the continent housing 53% of the world’s population [ 22 , 23 ]. In China, the total MSW generation was around 212 million tons (0.98 kg/capita/day) in 2006, out of which 91.4%, 6.4%, and 2.2% were disposed of via landfilling, incineration, and composting [ 24 ]. In 2010, only 660 Chinese cities produced about 190 million tons of MSW, accounting for 29% of the world’s total, while the total amount of solid waste in China could reach at least 480 million tons in 2030 [ 25 ]. In China, industrial waste (more than one billion tons) was five times the amount of MSW generated in 2002, which is expected to generate approximately twice as much MSW as the USA, while India will overtake the USA in MSW generation by 2030 [ 26 ].

In Malaysia, while the average rate of MSW generation was about 0.5–0.8 kg/person/day, Kuala Lumpur’s daily per capita generation rate was 1.62 kg in 2008 [ 27 ], which is expected to reach 2.23 kg in 2024 [ 28 ]. About 64% of Malaysia’s waste consists of household and office waste, 25% industrial waste, 8% commercial waste, and 3% construction waste [ 29 ]. In Sri Lanka, the assessed mean waste generation in 1999 was 6500 tons/day or 0.89 kg/cap/day, which is estimated to reach 1.0 kg/cap/day by 2025 [ 30 ]. With a 1.2% population growth rate, the total MSW generation in 2009 was approximately 7250 tons/day [ 31 ]. In Ghana, the solid waste generation rate was 0.47 kg/person/day, or about 12,710 tons per annum, consisting of biodegradable waste (0.318), non-biodegradable (0.096), and inert and miscellaneous waste (0.055) kg/person/day, respectively [ 32 ].

Moreover, global SWM costs are anticipated to increase to about $375.5 billion in 2025, with more than four-fold increases in lower- to middle-income countries and five-fold increases in low-income countries [ 33 ]. Globally, garbage collection, transportation, and disposal pose a major cost component in SWM systems [ 19 ]. Inadequate funding militates against the optimization of MSW disposal services. Table 1 compares the everyday SWM practices in low-, middle- and high-income countries according to major waste management steps. The literature indicates that waste generation rates and practices depend on the culture, socioeconomic status, population density, and level of commercial and industrial activities of a city or region.

Common MSW management practices by country’s level of economic development (adapted from [ 34 ]).

ActivityLow-Income CountriesMiddle-Income CountriesHigh-Income Countries
Source
Reduction
Low per capita waste generation rates, no organized SWM program, high reuse rate.Some source reduction elements but rarely incorporated into an organized SWM program.SWM programs emphasize the three “Rs”: reduce, reuse, and recycle. More producer responsibility.
CollectionInfrequent and inefficient. Serves mainly high visibility areas, the wealthy, and businesses willing to pay. A high fraction of inert and compostable waste impact collection. The overall collection is less than 50%.Improved collection and transportation in residential areas. Large vehicle fleet and mechanization. The overall collection rate is from 50% to 80%. Transfer stations are gradually incorporated into the SWM system.More than 90% collection rate. Compactor and well-mechanized trucks, and transfer stations are common. Waste volume is a major consideration. Aging collection workers are often considered in system design.
RecyclingInformal sector recycling by scavengers is dominant. High recycling rates for local and international markets. Imports of materials for recycling, including hazardous goods such as e-waste and shipbreaking. Recycling markets are unregulated and include several “middlemen”. Large price fluctuations.Informal recycling, high technology sorting, and processing facilities. Relatively high recycling rates. Materials are often imported for recycling. Recycling markets are mostly regulated. Material prices fluctuate considerably.Recyclable material collection, high-technology sorting, and processing facilities are common and regulated. Increased attention towards long-term markets. Overall, recycling rates are higher than in middle- and low-income countries. Informal recycling still exists (e.g., collecting aluminum cans). Extended product responsibility is common.
CompostingIt is rarely performed formally, albeit the waste consists of a high percentage of organic material. Markets for, and awareness of, compost are lacking.It is not widespread. Largescale composting facilities are mostly unsuccessful because of contamination and operating costs (little waste separation); some small-scale composting projects at the community/neighborhood level are more sustainable than the large-scale. Growing use of anaerobic digestion.It is widespread in backyard and large-scale facilities. The waste consists of smaller portions of organic matter than low- and middle-income countries. More source segregation makes composting easier. Anaerobic digestion is gaining popularity. Odor control is critical.
IncinerationIt is uncommon and mostly unsuccessful due to high capital, technical, and operation costs, the high moisture content in the waste, and the high proportion of inert waste.A few incinerators operate but experience financial and operational difficulties. Air pollution control equipment is not advanced and is often bypassed. Lack of emissions monitoring. Facilities are often driven by subsidies as construction and operation costs are prohibitive.Predominant in areas where land is scarce or expensive (e.g., islands). It is mostly subjected to environmental control to regulate and monitor emissions. It recovers energy but it is about at least three-folds the cost of landfilling per ton.
Landfilling and open dumpingOpen dumping of waste and low-technology landfill sites. High pollution to nearby aquifers, water bodies, and communities. Regularly receive medical waste. Waste is often burned. Significant health impacts on workers and residents.Sanitary landfills with some environmental controls often exist. Open dumping of garbage is widespread. Projects for landfill gas collection under clean development mechanism are commonplace.Sanitary landfills combined with liners, leak detection, and leachate collection systems. Gas collection and treatment systems. It is often problematic to open new landfills due to concerns of neighboring residents. Post-closure use of sites is increasingly important, e.g., golf courses and parks.
CostsWaste collection costs represent 80–90% of the municipal SWM budget. Local governments regulate waste fees, but the fee collection system is inefficient. Only a small proportion of the budget is allocated toward disposal.Collection costs represent 50% to 80% of the municipal SWM budget. Some local and national governments regulate waste fees and more innovation in fee collection, e.g., included in electricity or water bills. More mechanized collection fleets and disposal expenditures are higher than in low-income countries.Collection costs can represent less than 10% of the budget. Large budget allocations to intermediate waste treatment facilities. Upfront community participation reduces costs and increases options available to waste planners (e.g., recycling and composting).

3.2. Environmental and Public Health Impacts of SWM Practices in the Global South

  • (a)  Weak and Inadequate SWM System

Many problems in the cities of the global South are often associated with a weak or inadequate SWM system, which leads to severe direct and indirect environmental and public health issues at every stage of waste collection, handling, treatment, and disposal [ 30 , 31 , 32 , 33 , 34 ]. Inadequate and weak SWM results in indiscriminate dumping of waste on the streets, open spaces, and water bodies. Such practices were observed in, for example, Pakistan [ 35 , 36 ], India [ 37 ], Nepal [ 38 ], Peru [ 39 ], Guatemala [ 40 ], Brazil [ 41 ], Kenya [ 42 ], Rwanda [ 43 ], South Africa [ 44 , 45 ], Nigeria [ 46 ], Zimbabwe [ 47 ], etc.

The problems associated with such practices are GHG emissions [ 37 , 48 ], leachates [ 40 , 44 , 49 ], the spread of diseases such as malaria and dengue [ 36 ], odor [ 35 , 38 , 50 , 51 ], blocking of drains and sewers and subsequent flooding [ 52 ], suffocation of animals in plastic bags [ 52 ], and indiscriminate littering [ 38 , 39 , 53 ].

  • (b)  Irregular Waste Collection and Handling

Uncollected and untreated waste has socioeconomic and environmental costs extending beyond city boundaries. Environmental sustainability impacts of this practice include methane (CH 4 ) emissions, foul odor, air pollution, land and water contamination, and the breeding of rodents, insects, and flies that transmit diseases to humans. Decomposition of biodegradable waste under anaerobic conditions contributes to about 18% and 2.9% of global methane and GHG emissions, respectively [ 54 ], with the global warming effect of about 25 times higher than carbon dioxide (CO 2 ) emissions [ 55 ]. Methane also causes fires and explosions [ 56 ]. Emissions from SWM in developing countries are increasing due to rapid economic growth and improved living standards [ 57 ].

Irregular waste collection also contributes to marine pollution. In 2010, 192 coastal countries generated 275 million metric tons of plastic waste out of which up to 12.7 million metric tons (4.4%) entered ocean ecosystems [ 58 ]. Moreover, plastic waste collects and stagnates water, proving a mosquito breeding habitat and raising the risks of dengue, malaria, and West Nile fever [ 56 ]. In addition, uncollected waste creates serious safety, health, and environmental consequences such as promoting urban violence and supporting breeding and feeding grounds for flies, mosquitoes, rodents, dogs, and cats, which carry diseases to nearby homesteads [ 4 , 19 , 59 , 60 ].

In the global South, scavengers often throw the remaining unwanted garbage on the street. Waste collectors are rarely protected from direct contact and injury, thereby facing serious health threats. Because garbage trucks are often derelict and uncovered, exhaust fumes and dust stemming from waste collection and transportation contribute to environmental pollution and widespread health problems [ 61 ]. In India’s megacities, for example, irregular MSW management is one of the major problems affecting air and marine quality [ 62 ]. Thus, irregular waste collection and handling contribute to public health hazards and environmental degradation [ 63 ].

  • (c)  Landfilling and Open Dumping

Most municipal solid waste in the Global South goes into unsanitary landfills or open dumps. Even during the economic downturn during the COVID-19 pandemic, the amount of waste heading to landfill sites in Brazil, for example, increased due to lower recycling rates [ 64 ]. In Johor, Malaysia, landfilling destroys natural habitats and depletes the flora and fauna [ 65 ]. Moreover, landfilling with untreated, unsorted waste led to severe public health issues in South America [ 66 ]. Based on a study on 30 Brazilian cities, Urban and Nakada [ 64 ] report that 35% of medical waste was not properly treated before disposal, which poses a threat to public health, including the spread of COVID-19. Landfills and open dumps are also associated with high emissions of methane (CH 4 ), a major GHG [ 67 , 68 ]. Landfills and wastewater release 17% of the global methane emission [ 25 ]. About 29 metric tons of methane are emitted annually from landfills globally, accounting for about 8% of estimated global emissions, with 1.3 metric tons released from landfills in Africa [ 7 ]. The rate of landfill gas production steadily rises while MSW accumulates in the landfill emissions. Released methane and ammonia gases can cause health hazards such as respiratory diseases [ 37 , 69 , 70 , 71 ]. Since methane is highly combustible, it can cause fire and explosion hazards [ 72 ].

Open dumping sites with organic waste create the environment for the breeding of disease-carrying vectors, including rodents, flies, and mosquitoes [ 40 , 45 , 51 , 73 , 74 , 75 , 76 , 77 , 78 , 79 ]. Associated vector-borne diseases include zika virus, dengue, and malaria fever [ 70 , 71 , 72 , 73 , 74 , 75 , 76 , 77 , 78 , 79 , 80 ]. In addition, there are risks of water-borne illnesses such as leptospirosis, intestinal worms, diarrhea, and hepatitis A [ 80 , 81 ].

Odors from landfill sites, and their physical appearance, affect the lives of nearby residents by threatening their health and undermining their livelihoods, lowering their property values [ 37 , 38 , 68 , 82 , 83 , 84 ]. Moreover, the emission of ammonia (NH 3 ) from landfill sites can damage species’ composition and plant leaves [ 85 ]. In addition, the pollutants from landfill sites damage soil quality [ 73 , 84 ]. Landfill sites also generate dust and are sources of noise pollution [ 86 ].

Air and water pollution are intense in the hot and rainy seasons due to the emission of offensive odor, disease-carrying leachates, and runoff. Considerable amounts of methane and CO 2 from landfill sites produce adverse health effects such as skin, eyes, nose, and respiratory diseases [ 69 , 87 , 88 ]. The emission of ammonia can lead to similar problems and even blindness [ 85 , 89 ]. Other toxic gaseous pollutants from landfill sites include Sulphur oxides [ 89 ]. While less than 20% of methane is recovered from landfills in China, Western nations recover up to 60% [ 90 ].

Several studies report leachate from landfill sites contaminating water sources used for drinking and other household applications, which pose significant risks to public health [ 36 , 43 , 53 , 72 , 75 , 83 , 91 , 92 , 93 , 94 , 95 ]. For example, Hong et al. [ 95 ] estimated that, in 2006, the amount of leachates escaping from landfill sites in Pudong (China) was 160–180 m 3 per day. On the other hand, a properly engineered facility for waste disposal can protect public health, preserve important environmental resources, prevent clogging of drainages, and prevent the migration of leachates to contaminate ground and surface water, farmlands, animals, and air from which they enter the human body [ 61 , 96 ]. Moreover, heat in summer can speed up the rate of bacterial action on biodegradable organic material and produce a pungent odor [ 60 , 97 , 98 ]. In China, for example, leachates were not treated in 47% of landfills [ 99 ].

Co-mingled disposal of industrial and medical waste alongside municipal waste endangers people with chemical and radioactive hazards, Hepatitis B and C, tetanus, human immune deficiency, HIV infections, and other related diseases [ 59 , 60 , 100 ]. Moreover, indiscriminate disposal of solid waste can cause infectious diseases such as gastrointestinal, dermatological, respiratory, and genetic diseases, chest pains, diarrhea, cholera, psychological disorders, skin, eyes, and nose irritations, and allergies [ 10 , 36 , 60 , 61 ].

  • (d)  Open Burning and Incineration

Open burning of MSW is a main cause of smog and respiratory diseases, including nose, throat, chest infections and inflammation, breathing difficulty, anemia, low immunity, allergies, and asthma. Similar health effects were reported from Nepal [ 101 ], India [ 87 ], Mexico, [ 69 ], Pakistan [ 52 , 73 , 84 ], Indonesia [ 88 ], Liberia [ 50 ], and Chile [ 102 ]. In Mumbai, for example, open incineration emits about 22,000 tons of pollutants annually [ 56 ]. Mongkolchaiarunya [ 103 ] reported air pollution and odors from burning waste in Thailand. In addition, plastic waste incineration produces hydrochloric acid and dioxins in quantities that are detrimental to human health and may cause allergies, hemoglobin deficiency, and cancer [ 95 , 104 ]. In addition, smoke from open incineration and dumpsites is a significant contributor to air pollution even for persons staying far from dumpsites.

  • (e)  Composting

Composting is a biological method of waste disposal that entails the decomposing or breaking down of organic wastes into simpler forms by naturally occurring microorganisms, such as bacteria and fungi. However, despite its advantage of reducing organic waste by at least half and using compost in agriculture, the composting method has much higher CO 2 emissions than other disposal approaches. In Korea, for example, composting has the highest environmental impact than incineration and anaerobic digestion methods [ 105 ]. The authors found that the environmental impact of composting was found to be 2.4 times higher than that of incineration [ 105 ]. Some reviews linked composting with several health issues, including congested nose, sore throat and dry cough, bronchial asthma, allergic rhinitis, and extrinsic allergic alveolitis [ 36 , 106 ].

4. Implications and Recommendations

As discussed in the section above, there are many negative impacts of unsustainable SWM practices on the people and the environment. Although all waste treatment methods have their respective negative impacts, some have fewer debilitating impacts on people and the environment than others. The following is the summary of key implications of such unsustainable SWM practices.

  • Uncollected organic waste from bins, containers and open dumps harbors rodents, insects, and reptiles that transmit diseases to humans. It also produces odor due to the decomposition of organic wastes, especially in the summer, and leachates that migrate and contaminate receiving underground and surface waters.
  • Open dumps and non-engineered landfills release methane from decomposing biodegradable waste under anaerobiotic conditions. Methane is a key contributor to global warming, and it can cause fires and explosions.
  • Non-biodegradable waste, such as discarded tires, plastics, bottles, and tins, pollutes the ground and collects water, thus creating breeding grounds for mosquitoes and increasing the risk of diseases such as malaria, dengue, and West Nile fever.
  • Open burning of MSW emits pollutants into the atmosphere thereby increasing the incidences of nose and throat infections and inflammation, inhalation difficulties, bacterial infections, anemia, reduced immunity, allergies, and asthma.
  • Uncontrolled incineration causes smog and releases fine particles, which are a major cause of respiratory disease. It also contributes to urban air pollution and GHG emissions significantly.
  • Incineration and landfilling are associated with reproductive defects in women, developmental defects in children, cancer, hepatitis C, psychosocial impacts, poisoning, biomarkers, injuries, and mortality.

Therefore, measures toward more sustainable SWM that can mitigate such impacts must be worked out and followed. The growing complexity, costs, and coordination of SWM require multi-stakeholder involvement at each process stage [ 7 ]. Earmarking resources, providing technical assistance, good governance, and collaboration, and protecting environmental and human health are SWM critical success factors [ 47 , 79 ]. As such, local governments, the private sector, donor agencies, non-governmental organizations (NGOs), the residents, and informal garbage collectors and scavengers have their respective roles to play collaboratively in effective and sustainable SWM [ 40 , 103 , 107 , 108 ]. The following are key practical recommendations for mitigating the negative impacts of unsustainable SWM practices enumerated above.

First, cities should plan and implement an integrated SWM approach that emphasizes improving the operation of municipalities to manage all stages of SWM sustainably: generation, separation, transportation, transfer/sorting, treatment, and disposal [ 36 , 46 , 71 , 77 , 86 ]. The success of this approach requires the involvement of all stakeholders listed above [ 109 ] while recognizing the environmental, financial, legal, institutional, and technical aspects appropriate to each local setting [ 77 , 86 ]. Life Cycle Assessment (LCA) can likewise aid in selecting the method and preparing the waste management plan [ 88 , 110 ]. Thus, the SWM approach should be carefully selected to spare residents from negative health and environmental impacts [ 36 , 39 , 83 , 98 , 111 ].

Second, local governments should strictly enforce environmental regulations and better monitor civic responsibilities for sustainable waste storage, collection, and disposal, as well as health hazards of poor SWM, reflected in garbage littering observable throughout most cities of the Global South [ 64 , 84 ]. In addition, violations of waste regulations should be punished to discourage unsustainable behaviors [ 112 ]. Moreover, local governments must ensure that waste collection services have adequate geographical coverage, including poor and minority communities [ 113 ]. Local governments should also devise better SWM policies focusing on waste reduction, reuse, and recycling to achieve a circular economy and sustainable development [ 114 , 115 ].

Third, effective SWM requires promoting positive public attitudes toward sustainable waste management [ 97 , 116 , 117 , 118 ]. Therefore, public awareness campaigns through print, electronic, and social media are required to encourage people to desist from littering and follow proper waste dropping and sorting practices [ 36 , 64 , 77 , 79 , 80 , 82 , 91 , 92 , 119 ]. There is also the need for a particular focus on providing sorting bins and public awareness about waste sorting at the source, which can streamline and optimize subsequent SWM processes and mitigate their negative impacts [ 35 , 45 , 46 , 64 , 69 , 89 , 93 ]. Similarly, non-governmental and community-based organizations can help promote waste reduction, separation, and sorting at the source, and material reuse/recycling [ 103 , 120 , 121 , 122 ]. In Vietnam, for example, Tsai et al. [ 123 ] found that coordination among stakeholders and appropriate legal and policy frameworks are crucial in achieving sustainable SWM.

Fourth, there is the need to use environmentally friendly technologies or upgrade existing facilities. Some researchers prefer incineration over other methods, particularly for non-recyclable waste [ 44 , 65 ]. For example, Xin et al. [ 124 ] found that incineration, recycling, and composting resulted in a 70.82% reduction in GHG emissions from solid waste in Beijing. In Tehran city, Iran, Maghmoumi et al. [ 125 ] revealed that the best scenario for reducing GHG emissions is incinerating 50% of the waste, landfilling 30%, and recycling 20%. For organic waste, several studies indicate a preference for composting [ 45 , 51 , 75 ] and biogas generation [ 15 , 42 , 68 ]. Although some researchers have advocated a complete ban on landfilling [ 13 , 42 ], it should be controlled with improved techniques for leak detection and leachate and biogas collection [ 126 , 127 ]. Many researchers also suggested an integrated biological and mechanical treatment (BMT) of solid waste [ 66 , 74 , 95 , 119 ]. In Kenya, the waste-to-biogas scheme and ban on landfill and open burning initiatives are estimated to reduce the emissions of over 1.1 million tons of GHG and PM2.5 emissions from the waste by more than 30% by 2035 [ 42 ]. An appropriately designed waste disposal facility helps protect vital environmental resources, including flora, fauna, surface and underground water, air, and soil [ 128 , 129 ].

Fifth, extraction and reuse of materials, energy, and nutrients are essential to effective SWM, which provides livelihoods for many people, improves their health, and protects the environment [ 130 , 131 , 132 , 133 , 134 , 135 , 136 ]. For example, recycling 24% of MSW in Thailand lessened negative health, social, environmental, and economic impacts from landfill sites [ 89 ]. Waste pickers play a key role in waste circularity and should be integrated into the SWM system [ 65 , 89 , 101 , 137 ], even to the extent of taking part in decision-making [ 138 ]. In addition, workers involved in waste collection should be better trained and equipped to handle hazardous waste [ 87 , 128 ]. Moreover, green consumption, using bioplastics, can help reduce the negative impacts of solid waste on the environment [ 139 ].

Lastly, for effective SWM, local authorities should comprehensively address SWM challenges, such as lack of strategic SWM plans, inefficient waste collection/segregation and recycling, insufficient budgets, shortage of qualified waste management professionals, and weak governance, and then form a financial regulatory framework in an integrated manner [ 140 , 141 , 142 ]. Effective SWM system also depends on other factors such as the waste generation rate, population density, economic status, level of commercial activity, culture, and city/region [ 37 , 143 ]. A sustainable SWM strives to protect public health and the environment [ 144 , 145 ].

5. Conclusions

As global solid waste generation rates increase faster than urbanization, coupled with inadequate SWM systems, local governments and urban residents often resort to unsustainable SWM practices. These practices include mixing household and commercial garbage with hazardous waste during storage and handling, storing garbage in old or poorly managed facilities, deficient transportation practices, open-air incinerators, informal/uncontrolled dumping, and non-engineered landfills. The implications of such practices include air and water pollution, land degradation, climate change, and methane and hazardous leachate emissions. In addition, these impacts impose significant environmental and public health costs on residents with marginalized social groups affected mostly.

Inadequate SWM is associated with poor public health, and it is one of the major problems affecting environmental quality and cities’ sustainable development. Effective community involvement in the SWM requires promoting positive public attitudes. Public awareness campaigns through print, electronic, and social media are required to encourage people to desist from littering and follow proper waste-dropping practices. Improper SWM also resulted in water pollution and unhealthy air in cities. Future research is needed to investigate how the peculiarity of each Global South country can influence selecting the SWM approach, elements, aspects, technology, and legal/institutional frameworks appropriate to each locality.

Reviewed literature on the impacts of SWM practices in Asia (compiled by authors).

AuthorStudy AreaStudy AimImpacts on HumansImpacts on the EnvironmentRecommendations/Implications
Akmal & Jamil [ ]Rawalpindi and Islamabad, PakistanExamines the relationship between residents’ health and dumpsite exposure.
Hong et al. [ ]Pudong, ChinaAssesses the environmental impacts of five SW treatment options and acidification from NOx and SO
Gunamantha [ ]Kartamantul region, Yogyakarta, IndonesiaCompares five energetic valorization alternative scenarios and existing SW treatment. and CO emissions from landfill sites produce adverse health effects such as skin, eyes, nose, and respiratory diseases. and CO gases from landfill sites aggravated global warming challenges.
Abba et al. [ ]Johor Bahru, MalaysiaAssesses stakeholder opinion on the existing and future environmental impacts of household solid waste disposal. , N O, and NH increase climate change challenges.
Fang et al. (2012) [ ]Shanghai, ChinaIdentifies different sources of MSW odor compounds generated by landfill sites. cause harm to the respiratory tract, eyes, nose, lungs, etc. damage species composition, plant leaves, etc.
Menikpura et al. [ ]Nonthaburi municipality, Bangkok, ThailandExplores recycling activities’ effects on the sustainability of SWM practices. , NH , and NOx are associated with human toxicity and ailments.
Mongkolnchaiarunya [ ]Yala Manucipality, ThailandInvestigates the possibilities of integrating alternative SW solutions with local practices.
De & Debnath [ ]Kolkata, IndiaInvestigates the health effects of solid waste disposal practices.
Suthar & Sajwan [ ]Dehradun city, IndiaProposes a new solid waste disposal site
Phillips & Mondal [ ]Varanasi, IndiaEvaluates the sustainability of solid waste disposal options and CO
Ramachandra et al. [ ]Bangalore, IndiaAssesses the composition of waste for its management and treatment and CH cause likely adverse health effects.
Pokhrel & Viraraghavan [ ]Kathmandu Valley, NepalEvaluates SWM practices in Nepal.
Dangi et al. [ ]Tulsipur, NepalInvestigates household SWM options.
Islam (2016) [ ]Dhaka, BangladeshDevelops an effective SWM and recycling process for Dhaka city and CH emissions pollute the environment.
Das et al. [ ]Kathmandu valley, NepalEstimates the amount of MSW burnt in five municipalities. and CH emissions
Usman et al. [ ]Faisalabad, PakistanInvestigates the impacts of open dumping on groundwater quality and CH emissions from open-air burning.
Nisar et al. (2008) [ ]Bahawalpur City, PakistanExplores the sources and impacts of SWM practices
Ejaz et al. (2010) [ ]Rawalpindi city, PakistanIdentifies the causes of illegal dumping of SWM.
Batool & Chaudhry [ ]Lahore, PakistanEvaluates the effect of MSW management practices on GHG emissions. and CH emissions are causing associated health risks. and CH emissions.
Hoang & Fogarassy [ ]Hanoi, VietnamExplores the most sustainable MSW management options using MCDA.
Ansari [ ]BahrainProposes an integrated and all-inclusive SWM system
Clarke et al. [ ]QatarTo collect data about residents’ specific opinions concerning SW strategies.
Ossama et al. [ ]Saudi ArabiaReviews municipal SWM practices in Saudi Arabia causes infection in humans.
Brahimi et al. [ ]IndiaExplores the potential of waste-to-energy in India

Reviewed literature on the impacts of SWM practices in South America (compiled by authors).

AuthorStudy AreaAimImpacts on HumansImpacts on the EnvironmentRecommendations/Implications
McAllister [ ]Peru, South AmericaTo conduct a comprehensive review on the impact of inadequate SWM practices on natural and human environments
Bezama et al. [ ]Concepción (Chile) province and the city of Estrela (Brazil)To analyze the suitability of mechanical biological treatment of municipal solid waste in South America.
Ansari [ ]Guyana (South America)To develop effective and low-cost technologies for organic waste recycling
Hoornweg & Giannelli [ ]Latin America and the CaribbeanTo integrate the private sector to harness incentives in managing MS.W. in Latin America and the Caribbean. gas released from landfills is detrimental to public health. emissions from landfills
Olay-Romero et al. [ ]Sixty-six Mexican municipalities, MexicoTo propose a basic set of indicators to analyze technical aspects of street cleaning, collection, and disposal.
Urban & Nakada [ ]Thirty Brazilian citiesAssess environmental impacts caused by shifts in solid waste production and management due to the COVID-19 pandemic.
Gavilanes-Terán et al. [ ]Ecuadorian province of Chimborazo, Ecuador.Categorize organic wastes from the agroindustry and evaluate their potential use as soil amendments.
Pérez et al. [ ]City of Valdivia (Chile)Holistic environmental assessment perspective for municipal SWM.
Yousif & Scott [ ]Mazatenango, GuatemalaExamines the problems of SWM concerning administration, collection, handling, and disposal
Azevedo et al. [ ]Rocinha, BrazilTo develop a SWM framework from the sustainable supply chain management (SSCM) perspective.
Penteado & de Castro [ ]BrazilReviews the main SWM recommendations during the pandemic.
Pereira & Fernandino [ ]Mata de São João, BrazilEvaluates waste management quality and tests the applicability of a system of indicators
Buenrostro & Bocco [ ]MexicoExplores the causes and implications of MSW generation patterns
Juárez-Hernández [ ]Mexico City, MexicoEvaluates MSW practices in the megacity.
de Morais Lima & Paulo [ ]Quilombola communities, BrazilProposes a new approach for SWM using risk analysis and complementary sustainability criteria
Coelho & Lange [ ]Rio de Janeiro, Brazil.Investigates sustainable SWM solutions
Aldana-Espitia et al. [ ]City of Celaya, Guanajuato, Mexico.Analyzes the existing municipal SWM process
Silva & Morais [ ]Craft brewery, the northeastern Brazilian cityDevelops a collaborative approach to SWM.
Morero et al. [ ]Cities in ArgentinaProposes a mathematical model for optimal selection of municipal SWM alternatives
Bräutigam et al. [ ]Metropolitan Region of Santiago de ChileIdentifies the technical options for SWM to improve the sustainability of the system.
Vazquez et al. [ ]Bahia Blanca, Argentina.Assesses the type and amount of MSW generated in the city
Zarate et al. [ ]San Mateo Ixtatán, GuatemalaImplements SWM program to address one of the public health needs
Rodic-Wiersma & Bethancourt [ ]Guatemala City, GuatemalaEvaluates the present situation of the SWM system
Burneo et al. [ ]Cuenca (Ecuador)Evaluates the role of waste pickers and the conditions of their activities

Reviewed literature on the impacts of SWM practices in Africa (compiled by authors).

AuthorStudy AreaStudy AimImpacts on HumansEnvironment ImpactsRecommendations/Implications
Dianati et al. [ ]Kisumu, KenyaExplores the impact on PM and GHG emissions of the waste-to-biogas scheme
Kabera et al. [ ]Kigali, Rwanda, and Major cities of East AfricaBenchmarks and compares the performance of SWM and recycling systems
Kadama [ ]The North West Province of South AfricaFormulates a new approach to SWM based on the business process re-engineering principle.
Owojori et al. [ ]Limpopo Province, South AfricaDetermines the differences among waste components.
Ayeleru et al. [ ]Soweto, South AfricaEvaluates the cost-benefit analysis of setting up a recycling facility.
Friedrich & Trois [ ]eThekwiniMunicipality, South AfricaEstimates the current and future GHG emissions from garbage.
Nahmana & Godfreyb [ ]South AfricaExplores the opportunities and constraints to implementing economic instruments for SWM
Filimonau & Tochukwu [ ]Lagos, NigeriaExplores SWM practices in selected hotels in Lagos.
Trois & Vaughan-Jones [ ]AfricaProposes a plan for sustainable SWM
Parrot & Dia [ ]Yaoundé, CameroonAssesses the state of MSW management and suggests possible solutions
Dlamini et al. [ ]Johannesburg, South AfricaReviews waste-to-energy technologies and their consequence on sustainable SWM
Serge Kubanza & Simatele [ ]Johannesburg, South AfricaEvaluates solid waste governance in the city
Kabera & Nishimwe [ ]Kigali city, RwandaAnalyzes the current state of MSWM.
Muheirwe & Kihila [ ]Sub-Saharan AfricaExamines the current SWM regulation by exploring the global and national agendas.
Almazán-Casali & Sikra [ ]LiberiaProposes an effective SWM system.
Imam et al. [ ]Abuja, NigeriaDevelops an integrated and sustainable system for SWM in Abuja.
Mapira [ ]Masvingo, ZimbabweAssesses the current environmental challenges associated with SWM and disposal
Adeleke et al. [ ]South AfricaEvaluates the trend, shortcomings, progress, and likely improvement areas for each sustainable waste management component
Muiruri & Karatu [ ]Eastleigh Nairobi County, KenyaAssesses the household level solid waste disposal methods

Funding Statement

This research received no external funding.

Author Contributions

Conceptualization, I.R.A. and K.M.M.; methodology, I.R.A., K.M.M. and U.L.D.; validation, I.R.A., K.M.M. and U.L.D.; formal analysis, I.R.A. and K.M.M.; investigation, I.R.A., K.M.M., U.L.D., F.S.A., M.S.A., S.M.S.A. and W.A.G.A.-G.; resources, I.R.A., K.M.M., U.L.D., F.S.A., M.S.A., S.M.S.A., W.A.G.A.-G. and T.I.A.; data curation, U.L.D., F.S.A., M.S.A., S.M.S.A. and W.A.G.A.-G.; writing—original draft preparation, I.R.A., K.M.M., U.L.D., F.S.A., M.S.A., S.M.S.A. and W.A.G.A.-G.; writing—review and editing, I.R.A., K.M.M. and U.L.D.; supervision, F.S.A. and T.I.A.; project administration, I.R.A.; funding acquisition, I.R.A., K.M.M., U.L.D., F.S.A., M.S.A., S.M.S.A., W.A.G.A.-G. and T.I.A. All authors have read and agreed to the published version of the manuscript.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Data availability statement, conflicts of interest.

The authors declare no conflict of interest in conducting this study.

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Academia.edu no longer supports Internet Explorer.

To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to  upgrade your browser .

Enter the email address you signed up with and we'll email you a reset link.

  • We're Hiring!
  • Help Center

paper cover thumbnail

Extent of Implementation of Solid Waste Management Program in Bacon District

Profile image of UIJRT | United International Journal for Research & Technology

2021, United International Journal for Research & Technology (UIJRT)

This study is qualitative research that center on the assessment of the solid waste management program in Bacon District in the school year 2017-2018. A total enumeration of 184 is the respondents of the study. The study focus on the activities undertaken by the schools, extent of implementation along with waste segregation, collection, re-use, reduction, recycle and compost. It includes also the problems met during the implementation of the program. Findings reveal that most of the activities undertaken by the schools to implement solid waste management programs were conduct on solid waste management campaigns, incorporate solid waste management in the lessons and activities that prioritize recycling, reduction and re-use. The extent of implementation along waste segregation is highly implemented while in terms of collection, re-use, reduce, recycle and composting is implemented. The study also reveals shortcomings in connection with the implementation of the program such as lack of facility to process recyclable materials, attitudes and awareness of the pupils when it comes to solid waste management, lack of training on recycling and composting of waste, inadequate and insufficient waste collection equipment and lack of resources or fund in maintaining Solid Waste Management Program. A project Waste Management Practices: A key to sustainable Solid Waste Management Program as the output of the study shall be proposing to address the said issues.

Related Papers

Dr. Tridibesh Tripathy

The article is based on the project activities done by Vatsalya, an NGO based in Lucknow from February 2019 to March 2019 on recycling of waste. The name of the project was "Mission Recycle" that was supported by Plan India. The project was operational as "My school mission recycling as a WASH issue related activity in the Government primary schools in Mall block of Lucknow district of Lucknow, Uttar Pradesh.There was one objective and 5 expected results of the study. The objective of the study on which the report is based was "Creating Awareness amongst the children and teachers of government schools towards recycle and reuse of PET (Polyethylene Terephthalate) waste". The five results that the study expected out of the activities done by the project were to increase awareness amongst students about recycle and reuse of PET. The second objective was to increase awareness about recycling and waste-reuse related activities. The third was to increase participation of schools at district and state level competitions on recycle and reuse. The fourth focused on cadre of trained teachers who will regularly engage the students in recycling activities and create curriculum/lesson plans that focus on the importance of recycling and re-use. The fifth centred on the quantity of PET & plastics being better managed at the end of the project for appropriate disposal / recycling.

implementation of solid waste management research paper

Psychology and Education: A Multidisciplinary Journal

Psychology and Education

This study aimed to evaluate the implementation of solid waste management (SWM) in public secondary schools within the Municipality of Matnog, Sorsogon, during the school year 2021-2022. The research focused on four key aspects of SWM: waste minimization, waste segregation, waste storage and collection, and waste disposal, as perceived by students, teachers, and school administrators. Additionally, the study sought to identify significant differences in perceptions among these groups and to propose an intensified action plan based on the findings. A descriptive research design was employed, utilizing a questionnaire adapted from the Department of Environment and Natural Resources (DENR) manual. The study involved 213 respondents, including school principals, assistant principals, head teachers, and students from four public secondary schools. Data were analyzed using weighted mean and ANOVA to determine the level of implementation and the significance of differences in perceptions among respondents. The results revealed varying levels of SWM implementation across the four domains. School administrators generally perceived the implementation as highly implemented, while teachers and students perceived it as moderately to slightly implemented. Significant differences were found between the perceptions of students, teachers, and administrators in waste minimization, storage, collection, and disposal, but not in waste segregation. The study underscores the need for an intensified SWM action plan to address the disparities in implementation and to enhance waste management practices in the schools and the broader community. These findings provide valuable insights for the Department of Education, local government units, and other stakeholders to strengthen SWM efforts in public secondary schools in Matnog.

Sustainability

Elena C R I S T I N A Rada

Environmental Science and Pollution Research

Pantelitsa Loizia

jeneva diez

The purpose of this study was to evaluate the implementation of Ecological Solid Waste Management Program (ESWMP). The study was conducted to find out the mass of wastes generated from Senior High School students, the mass of waste diverted to composting, recycling, residual, and special, and the perception of the students towards the implementation of ESWMP. The study utilized descriptive research design. Purposive sampling technique was employed to find out the mass of generated waste in SHS while random sampling technique was employed to the selection of respondents of the study. A total of 399 students (205 grade 11 and 194 grade 12 students) were drawn from the population of 796 students. Two research instruments were utilized in the study. To facilitate the analysis of data, Mean was used. Findings revealed that the generated wastes has the following average masses in kilograms: 0.28 (biodegradable), 1.68 (residual), 1.66 (paper), and 0.45 (recyclable. Out from these wastes, 0.28 kg is diverted to composting, 1.68 kg to residual, and 2.11 kg to recycling. There was no special waste generated. Perception of students on the ESWMP implementation is Very Satisfactory.

International Journal of Advanced Research

Vaishali Gupta

The world is a beautiful place for all human kind but our recent activities has adversely affected the environment. The damage made to the eco-system will be irreparable if adequate actions are not taken immediately. Schools play a vital role in shaping students to choose the right path in their life. Imparting environmental education during the early years of learning can ensure a future generation that is sensitive towards environment. The following research paper discusses various practices adopted by selected schools in Delhi, India to control (reduce, reuse and recycle) their solid waste and empower students at the same time.

Nelma Limpot

ABSTRACT THE LEVEL OF AWARENESS AND EXTENT OF PARTICIPATION ON WASTE DISPOSAL AND SEGREGATION IMPLEMENTATION IN THE SECONDARY SCHOOLS IN THE MUNICIPALITY OF DON CARLOS by Nelma B. Limpot, Master of Arts in Teaching, Major in Social Studies, Valencia Colleges (Bukidnon) Incorporated, Valencia City, Bukidnon. March 2016. Adviser: Elpedio Y. Lomarda, PhD This research aimed to gather data on the level of awareness and extent of participation in the programs on the implementation of waste disposal and segregation among secondary schools as perceived by the students in the five secondary schools of the Municipality of Don Carlos, Province of Bukidnon. This was conducted to help the country in finding solutions on the worst situation of our environment. Problems stated in this book had been answered according to the data gathered. The design used in this study was quantitative-descriptive- correlation research method in which interpretation of data involved the assignment of numerical values to variables. It utilized a researcher-made questionnaires as instrument in gathering the data needed from the respondents who were composed of students from different levels. The data gathered were tabulated and analyzed through the Statistical Package for Social Sciences (SPSS). The scoring procedure was done through the five-point Likert’s Scale. It used mean, frequency count, standard deviation, and percentage to determine the profile of the respondents in terms of age; gender; and grade level; level of awareness on the implementation of waste disposal and segregation in different secondary schools as perceived by the students; and the extent of participation of students on government programs on waste disposal. Standard deviation, and one-way ANOVA (Analysis of Variance) were utilized to find out the significant difference in the level of awareness and the extent of participation in the programs on the implementation of waste disposal and segregation when grouped according to profile and the significant relationship between the level of awareness and the extent of participation in the programs on implementation of waste disposal and segregation among the secondary schools as perceived by students. This study found out that there were more male respondents than female. Majority of the students are aged 14-16 years old. Most of the respondents are Grade 9 but almost equaled with the Grade 10 students. The level of awareness of students on waste management was with high extent and the extent of participation in the programs on the implementation of waste disposal and segregation in the secondary schools as perceived by the students was described as qualitatively high. It found out that there was a significant difference in the level of awareness on the implementation of waste disposal and segregation when grouped according to profile in terms of age non-significant in terms of gender. In the extent of participation in the programs on the implementation of waste disposal and segregation when grouped according to profile in terms of age and gender had been found out to be with significant difference. The test of significant relationship between the level of awareness and the extent of participation in the programs on the implementation of waste disposal and segregation among secondary schools as perceived by students was found to be significant. Through the findings gathered, the following were strongly recommended by this study: In order to elevate the level of awareness of secondary schools on waste disposal and segregation municipal officials, concerned government agencies, school administrators, non-government organizations, parents, teachers, and student should join forces to ensure full dynamic enforcement. The Department of Education, specifically the Division of Bukidnon planning officials should consistently appraise school performance. School administrators should include in their organization, the participation of the surrounding community, parents, and other stakeholders to advocate the proper waste disposal and segregation. Teachers should also take account of imparting the knowledge proper waste disposal and segregation and emphasize the benefits we can acquire when we apply it to our day to day life. Community should also accept their role as the laboratory of the students in testing what was learned in the four corners of the classroom, and adapt the scientific learning brought by the students to more widen the implementation of the studied government project. Keywords: Level of Awareness, Extent of Participation, Waste Disposal, Waste Segregation and Implementation

Romenick Molina

Solid waste management is one of the challenges faced by many countries. Poor solid waste management will lead to various problems in health, environment and socio-economic aspects. Since, educational institution is an agent of change and through R.A. No. 9003, solid waste management concepts are being integrated in science education. In this study, descriptive – quantitative approach was utilized using the researcher made instrument - Solid Waste Management Awareness and Practices Questionnaire (SWMAPQ). A total of 332 Grade 12 students participated in the study from a State College, of which 68 are Science, Technology, Engineering and Mathematics (STEM) students, 166 are Technical Vocational Livelihood (TVL) students and 98 are General Academic Strand (GAS) students. Result shows that students have enough knowledge in terms on definition of solid waste, effect of improper solid waste disposal, solid waste prohibited activities, school initiatives towards solid waste, importance of solid waste management and students’ responsibilities. However, students have low knowledge on the different laws relevant to solid waste management. Television or radio, parents and social media are the sources of these awareness. The result also shows that students have good solid waste management practices in terms on segregation, reduction, reuse, recycle and disposal.

Journal of Emerging Technologies and Innovative Research (JETIR)

Efficient and effective handling of solid waste in educational institutions starts with determining its composition and methods adopted for disposal. Mapping of solid waste was carried out in four stages-(1) Nature of solid waste generated, (2) segregation of solid waste, (3) management of solid waste; and (4) quantum of waste disposed. The waste generated was categorized under 8 major heads (waste paper, plastic, electronics, furniture, garden, food, textiles and other wastes) and sub-heads to understand the waste stream from generation to final treatment and disposal. Results revealed that most of the waste generated in school was gathered at the main collection point of the school without segregation. Furniture and garden waste were the only two categories sorted/ segregated. More than half of the waste produced in selected schools was regularly discarded (51.60%), however, data also revealed that 15.17% of this waste was organic in nature which has the potential to be recycled to reduce the overall impact on the environment. In the light of the results obtained, it is essential to understand the need for incorporating corrective measures aimed at improving solid waste treatment and increasing awareness among school children. Intex Terms-Environment Education, solid waste management, quantum of waste, mapping of solid waste, environment conservation, Delhi schools.

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

RELATED PAPERS

Medical Journal of Shree Birendra Hospital

shiva Dhakal

AWARENESS, ATTITUDES, AND PRACTICES ON WASTE MANAGEMENT AMONG HIGH SCHOOL STUDENTS OF TRINITY CHRISTIAN SCHOOL

Lari Abalajon

IJESRT Journal

Asian Journal of Education and Social Studies

Surahma Mulasari

ROJINE VENTURA

Vipula Kulathunga

Neelima Jerath

Sheena Mae T . Comighud, EdD , emerson lalamonan

maizatul azrina Yaakob

Gunjan Barua

Dennis Madrigal

International Journal of ADVANCED AND APPLIED SCIENCES

Van Ryan Kristopher Galarpe

Procedia - Social and Behavioral Sciences

Asmawati Desa

Cecilia Geronimo

International Journal of Innovative Research in Engineering & Management (IJIREM)

IJIREM JOURNAL

Institutional Multidisciplinary Research and Development (IMRaD) Jounal

DR. DAVID C . BUENO

  •   We're Hiring!
  •   Help Center
  • Find new research papers in:
  • Health Sciences
  • Earth Sciences
  • Cognitive Science
  • Mathematics
  • Computer Science
  • Academia ©2024

Information

  • Author Services

Initiatives

You are accessing a machine-readable page. In order to be human-readable, please install an RSS reader.

All articles published by MDPI are made immediately available worldwide under an open access license. No special permission is required to reuse all or part of the article published by MDPI, including figures and tables. For articles published under an open access Creative Common CC BY license, any part of the article may be reused without permission provided that the original article is clearly cited. For more information, please refer to https://www.mdpi.com/openaccess .

Feature papers represent the most advanced research with significant potential for high impact in the field. A Feature Paper should be a substantial original Article that involves several techniques or approaches, provides an outlook for future research directions and describes possible research applications.

Feature papers are submitted upon individual invitation or recommendation by the scientific editors and must receive positive feedback from the reviewers.

Editor’s Choice articles are based on recommendations by the scientific editors of MDPI journals from around the world. Editors select a small number of articles recently published in the journal that they believe will be particularly interesting to readers, or important in the respective research area. The aim is to provide a snapshot of some of the most exciting work published in the various research areas of the journal.

Original Submission Date Received: .

  • Active Journals
  • Find a Journal
  • Proceedings Series
  • For Authors
  • For Reviewers
  • For Editors
  • For Librarians
  • For Publishers
  • For Societies
  • For Conference Organizers
  • Open Access Policy
  • Institutional Open Access Program
  • Special Issues Guidelines
  • Editorial Process
  • Research and Publication Ethics
  • Article Processing Charges
  • Testimonials
  • Preprints.org
  • SciProfiles
  • Encyclopedia

minerals-logo

Article Menu

implementation of solid waste management research paper

  • Subscribe SciFeed
  • Recommended Articles
  • Author Biographies
  • Google Scholar
  • on Google Scholar
  • Table of Contents

Find support for a specific problem in the support section of our website.

Please let us know what you think of our products and services.

Visit our dedicated information section to learn more about MDPI.

JSmol Viewer

Toward viable industrial solid residual waste recycling: a review of its innovative applications and future perspectives.

implementation of solid waste management research paper

Share and Cite

Keskin, T.; Yilmaz, E.; Kasap, T.; Sari, M.; Cao, S. Toward Viable Industrial Solid Residual Waste Recycling: A Review of Its Innovative Applications and Future Perspectives. Minerals 2024 , 14 , 943. https://doi.org/10.3390/min14090943

Keskin T, Yilmaz E, Kasap T, Sari M, Cao S. Toward Viable Industrial Solid Residual Waste Recycling: A Review of Its Innovative Applications and Future Perspectives. Minerals . 2024; 14(9):943. https://doi.org/10.3390/min14090943

Keskin, Tugba, Erol Yilmaz, Tugrul Kasap, Muhammet Sari, and Shuai Cao. 2024. "Toward Viable Industrial Solid Residual Waste Recycling: A Review of Its Innovative Applications and Future Perspectives" Minerals 14, no. 9: 943. https://doi.org/10.3390/min14090943

Article Metrics

Article access statistics, further information, mdpi initiatives, follow mdpi.

MDPI

Subscribe to receive issue release notifications and newsletters from MDPI journals

IMAGES

  1. (PDF) Awareness and Implementation of Solid Waste Management (SWM

    implementation of solid waste management research paper

  2. (PDF) Environmental Sustainability Impacts of Solid Waste Management

    implementation of solid waste management research paper

  3. (PDF) SOLID WASTE MANAGEMENT

    implementation of solid waste management research paper

  4. Solid Waste Research paper

    implementation of solid waste management research paper

  5. (PDF) Implementation of Solid Waste Management: Basis for Enhancement

    implementation of solid waste management research paper

  6. Future of waste management research paper

    implementation of solid waste management research paper

VIDEO

  1. MEANING OF SOLID WASTE MANAGEMENT AND FACTORS AFFECTING SOLID WASTE MANAGEMENT

  2. Decathlon: Supply Chain Management

  3. Solid waste management process documentation at Balurghat Municipality

  4. NPTEL_Municipal Solid Waste Management_July 2024_Week 6_Assignment Solving Session_03.09.2024

  5. Thesis on Waste Management Research and Training Centre

  6. Solid Waste Management Board 04-03-2024

COMMENTS

  1. (PDF) Implementation and Challenges of Solid Waste Management in

    This study determined the extent of implementation of the city ordinance on solid waste management of communities in terms of the variables assessed by a sample size of 67 implementers and 384 ...

  2. (PDF) Awareness and Implementation of Solid Waste Management (SWM

    This research used the descriptive-correlational method to determine the level of respondents' awareness and extent of implementation of Solid Waste Management (SWM) Practices in District 2 ...

  3. Solid waste management: Scope and the challenge of sustainability

    Solid waste management (SWM) is an integral part of an environmental management system. ... Implementation of such steps should provide an example of how public awareness at the micro or village level can facilitate effective SWM. (c) ... The analysis of research data collected in this paper also revealed that an improved approach to integrate ...

  4. (PDF) Awareness and Implementation of Solid Waste Management (SWM

    This research used the descriptive-correlational method to determine the level of respondents' awareness and extent of implementation of Solid Waste Management (SWM) Practices in District 2, Bayawan City Division, Negros Oriental, Philippines for SY 2018-2019 in terms of the areas of segregation, reduce, reuse, recycle, and disposal.

  5. Solid waste management: Scope and the challenge of sustainability

    Solid waste management (SWM) is an integral part of an environmental management system.SWM approaches have been modified into a more practical and effective option to establish sustainability based on the "reduce", "reuse", and "recycle" (3R) principles. This review provides an overview of a wide range of existing SWM strategies with the following key objectives: (i) to ...

  6. Raising Awareness on Solid Waste Management through Formal Education

    Solid Waste Management (SWM) is a multifaceted problem comprising political, socioeconomic, institutional, and environmental aspects. Due to exponential urban growth, it has become one of the most significant issues faced by urban spaces in developing countries. The gap in environmental knowledge among the youth and the old within developing countries contribute to ecological issues or waste ...

  7. PDF Extent of Implementation of Solid Waste Management Program in Bacon

    It shows from the table that the extent of implementation of Solid Waste management in terms of recycling were described as implemented with an average weighted mean of 4.06. The indicators with the statement of integrates recycling in the lessons got the highest weighted mean of 4.70 described as highly implemented.

  8. Achieving sustainable development goals from the perspective of solid

    Considering SDGs, which encompass multiple sectors of urban governance. It can be seen that the interconnectedness and the basic interdependence between it and the solid waste management sector, where environmentally sound and integrated solid waste management programs and plans affect the achievement and improvement of many indicators of SDGs, whether that effect is directly or indirectly.

  9. Implementation of Circular Economy Principles in Industrial Solid Waste

    The existing solid waste management principles are increasingly being replaced with discussions on circular economy (CE) principles in contemporary deliberations on solid waste handling. This shift is supported by the global adoption of the concept of sustainable development. The CE offers better prospects to solid waste management and has been implemented successfully in its full theory ...

  10. Introduction to Solid Waste Management

    The generation, recycling, composting, combustion with energy recovery, and landfilling of MSW have all changed dramatically over the last few decades [].From under 10% of produced MSW in 1980 to 35.0% in 2017, the combined recycling and composting rate have increased (Fig. 1.2).Recycling alone (without composting) increased from 14.5 million tons (9.6% of MSW) in 1980 to 69 million tons (23.6 ...

  11. Modern Technologies for Waste Management: A Review

    Facing the problem of increasing waste, scientists, foundations, and companies around the globe resulted in ideas and invented technologies to slow down the process. Sources of waste range from industrial waste (e.g., construction and demolition materials, hazardous wastes, ashes) to municipal solid waste (e.g., food wastes, paper, cardboard, plastics, textiles). Modern solutions do not focus ...

  12. Full article: Behavioral aspects of solid waste management: A

    ABSTRACT. Over the past three decades, research on the established linkages between solid waste management and psychological models has progressed rapidly. This informs statutory bodies that wish to design an effective solid waste management system. To further address this crucial task, this paper examined the existing literature on behavioral ...

  13. Circular economy approach for sustainable solid waste management: A

    Further, the current waste management practices, waste management inadequacy, and inferring the CE as a solution for successful waste management practices are also discussed. The current article also provides the cradle-to-cradle approach in CE, its various goals, and the recovery of energy and resources from the discarded materials by ...

  14. A bibliometric review of waste management and innovation: Unveiling

    The pressing challenges in waste management have motivated this comprehensive study examining prior research and contemporary trends concerning innovation and waste management. A meticulous investigation of 2264 documents (1968-2024) was conducted using bibliometrix R-tool to analyse Scopus and Web of Science databases, offering a holistic ...

  15. (PDF) Implementation of solid waste management policies in Kenya

    The management of MSW. has become a severe problem for governments, especially in developing countries, partly due to. the lack of e cient implementation and enforcement of solid waste management ...

  16. PDF Environmental Sustainability Impacts of Solid Waste Management

    3.1. Solid Waste Management Practices in the Global South. Global municipal solid waste (MSW) generation rose from 1.3 billion tons in 2012 to 2.1 billion tons (0.74 kg/capita/day) as of 2016, which by 2050 is expected to increase by 70% to reach a total of 3.40 billion tons or 1.42 kg/capita/day [19].

  17. Strategy to improve the solid waste management of Barangay Matictic

    [1] United States Environmental Protection Agency 2019 Sustainable Materials Management: Non-Hazardous Materials and Waste Management Hierarchy US EPA Google Scholar [2] The World Bank 2012 What A Waste: A Global Review of Solid Waste Management (Washington DC., USA) Google Scholar [3] Kaza S, Yao L, Bhada-Tata P and Woerden F V 2018 What a Waste 2.0: A Global Snapshot of Solid Waste ...

  18. Recent trends in solid waste management status, challenges, and

    The management of solid waste generated in a country must be one of the priorities while forming policies at the national level (Abas and Wee, 2014). The primary reasons, particularly in urban areas, are economic growth, migration from cities, unplanned land use, and most importantly, the lack of proper legislation on solid waste management.

  19. A Long-Standing Problem: A Review on the Solid Waste Management in the

    report, the current amount of waste produc ed in the. Philippine cities wi ll increase by approximately. 165% in 2025 - from abo ut 29,315 to 77, 776 tons. per day (Ng, 2012). The increasing ...

  20. Environmental Sustainability Impacts of Solid Waste Management ...

    Solid waste management (SWM) is one of the key responsibilities of city administrators and one of the effective proxies for good governance. Effective SWM mitigates adverse health and environmental impacts, conserves resources, and improves the livability of cities. However, unsustainable SWM practices, exacerbated by rapid urbanization and financial and institutional limitations, negatively ...

  21. A system design for solid waste management: A case study of an

    Solid waste management is one of the main environmental problems faced by developing nations like India. To effectively cater to this need, this paper proposes a structured waste management system which was effectively implemented in a community in the Alappad panchayat in Kollam district of Kerala. The system was evaluated based on continuous monitoring at each stage of its implementation ...

  22. Solid waste issue: Sources, composition, disposal, recycling, and

    The moisture of solid wastes ranged from 5% to 40% with an average of 20%. This very wide range of the MC depends on the socio-economic structure and the regional characteristics of the solid waste [75]. Nevertheless, the MC may reach up to 55%-70% depending the on climate conditions, and solid waste composition [76].

  23. Applicability of the Life Cycle Assessment Model in Solid Waste

    Downloadable (with restrictions)! Solid waste increase is inevitable globally due to anthropogenic activities. This adds burden to waste management systems in developing countries including Zimbabwe. Currently, life cycle assessment (LCA) model is used to achieve sustainability and circular economy (CE) in solid waste management. Therefore, the main goal of this paper was to unearth LCA model ...

  24. Environmental Sustainability Impacts of Solid Waste Management

    Solid Waste Management Practices in the Global South. Global municipal solid waste (MSW) generation rose from 1.3 billion tons in 2012 to 2.1 billion tons (0.74 kg/capita/day) as of 2016, which by 2050 is expected to increase by 70% to reach a total of 3.40 billion tons or 1.42 kg/capita/day [19].

  25. Extent of Implementation of Solid Waste Management Program in Bacon

    The following research paper discusses various practices adopted by selected schools in Delhi, India to control (reduce, reuse and recycle) their solid waste and empower students at the same time. ... Table 3.D: Extent of Implementation of Solid Waste Management Program in terms of Reduce School Coordina Advis Over Heads tors ers all 4.71 4.65 ...

  26. Toward Viable Industrial Solid Residual Waste Recycling: A ...

    Industrial solid residual waste (ISRW) generated during and/or due to the making of energy, heat, and raw materials poses a major threat to a sustainable future due to its large production quantities and complex characteristics. Especially improper disposal of ISRW (e.g., coal ashes, municipal waste residue, and biomass ashes) not only threatens human health but can also cause environmental ...