Hypothesis, Model, Theory, and Law

Dorling Kindersley / Getty Images

  • Physics Laws, Concepts, and Principles
  • Quantum Physics
  • Important Physicists
  • Thermodynamics
  • Cosmology & Astrophysics
  • Weather & Climate

hypothesis theory vs law

  • M.S., Mathematics Education, Indiana University
  • B.A., Physics, Wabash College

In common usage, the words hypothesis, model, theory, and law have different interpretations and are at times used without precision, but in science they have very exact meanings.

Perhaps the most difficult and intriguing step is the development of a specific, testable hypothesis. A useful hypothesis enables predictions by applying deductive reasoning, often in the form of mathematical analysis. It is a limited statement regarding the cause and effect in a specific situation, which can be tested by experimentation and observation or by statistical analysis of the probabilities from the data obtained. The outcome of the test hypothesis should be currently unknown, so that the results can provide useful data regarding the validity of the hypothesis.

Sometimes a hypothesis is developed that must wait for new knowledge or technology to be testable. The concept of atoms was proposed by the ancient Greeks , who had no means of testing it. Centuries later, when more knowledge became available, the hypothesis gained support and was eventually accepted by the scientific community, though it has had to be amended many times over the year. Atoms are not indivisible, as the Greeks supposed.

A model is used for situations when it is known that the hypothesis has a limitation on its validity. The Bohr model of the atom , for example, depicts electrons circling the atomic nucleus in a fashion similar to planets in the solar system. This model is useful in determining the energies of the quantum states of the electron in the simple hydrogen atom, but it is by no means represents the true nature of the atom. Scientists (and science students) often use such idealized models  to get an initial grasp on analyzing complex situations.

Theory and Law

A scientific theory or law represents a hypothesis (or group of related hypotheses) which has been confirmed through repeated testing, almost always conducted over a span of many years. Generally, a theory is an explanation for a set of related phenomena, like the theory of evolution or the big bang theory . 

The word "law" is often invoked in reference to a specific mathematical equation that relates the different elements within a theory. Pascal's Law refers an equation that describes differences in pressure based on height. In the overall theory of universal gravitation developed by Sir Isaac Newton , the key equation that describes the gravitational attraction between two objects is called the law of gravity .

These days, physicists rarely apply the word "law" to their ideas. In part, this is because so many of the previous "laws of nature" were found to be not so much laws as guidelines, that work well within certain parameters but not within others.

Scientific Paradigms

Once a scientific theory is established, it is very hard to get the scientific community to discard it. In physics, the concept of ether as a medium for light wave transmission ran into serious opposition in the late 1800s, but it was not disregarded until the early 1900s, when Albert Einstein proposed alternate explanations for the wave nature of light that did not rely upon a medium for transmission.

The science philosopher Thomas Kuhn developed the term scientific paradigm to explain the working set of theories under which science operates. He did extensive work on the scientific revolutions that take place when one paradigm is overturned in favor of a new set of theories. His work suggests that the very nature of science changes when these paradigms are significantly different. The nature of physics prior to relativity and quantum mechanics is fundamentally different from that after their discovery, just as biology prior to Darwin’s Theory of Evolution is fundamentally different from the biology that followed it. The very nature of the inquiry changes.

One consequence of the scientific method is to try to maintain consistency in the inquiry when these revolutions occur and to avoid attempts to overthrow existing paradigms on ideological grounds.

Occam’s Razor

One principle of note in regards to the scientific method is Occam’s Razor (alternately spelled Ockham's Razor), which is named after the 14th century English logician and Franciscan friar William of Ockham. Occam did not create the concept—the work of Thomas Aquinas and even Aristotle referred to some form of it. The name was first attributed to him (to our knowledge) in the 1800s, indicating that he must have espoused the philosophy enough that his name became associated with it.

The Razor is often stated in Latin as:

entia non sunt multiplicanda praeter necessitatem
or, translated to English:
entities should not be multiplied beyond necessity

Occam's Razor indicates that the most simple explanation that fits the available data is the one which is preferable. Assuming that two hypotheses presented have equal predictive power, the one which makes the fewest assumptions and hypothetical entities takes precedence. This appeal to simplicity has been adopted by most of science, and is invoked in this popular quote by Albert Einstein:

Everything should be made as simple as possible, but not simpler.

It is significant to note that Occam's Razor does not prove that the simpler hypothesis is, indeed, the true explanation of how nature behaves. Scientific principles should be as simple as possible, but that's no proof that nature itself is simple.

However, it is generally the case that when a more complex system is at work there is some element of the evidence which doesn't fit the simpler hypothesis, so Occam's Razor is rarely wrong as it deals only with hypotheses of purely equal predictive power. The predictive power is more important than the simplicity.

Edited by Anne Marie Helmenstine, Ph.D.

  • The Basics of Physics in Scientific Study
  • Kinetic Molecular Theory of Gases
  • De Broglie Hypothesis
  • An Introduction to Brownian Motion
  • The History of Gravity
  • History of the Michelson-Morley Experiment
  • Newton's Law of Gravity
  • Wave Particle Duality and How It Works
  • What Is the Boltzmann Brains Hypothesis?
  • Five Great Problems in Theoretical Physics
  • The Basics of String Theory
  • Understanding Cosmology and Its Impact
  • Albert Einstein: What Is Unified Field Theory?
  • What Is the Steady-State Theory in Cosmology?
  • An Idealized Model in Physics
  • What Is Model-Dependent Realism?

Back Home

  • Science Notes Posts
  • Contact Science Notes
  • Todd Helmenstine Biography
  • Anne Helmenstine Biography
  • Free Printable Periodic Tables (PDF and PNG)
  • Periodic Table Wallpapers
  • Interactive Periodic Table
  • Periodic Table Posters
  • Science Experiments for Kids
  • How to Grow Crystals
  • Chemistry Projects
  • Fire and Flames Projects
  • Holiday Science
  • Chemistry Problems With Answers
  • Physics Problems
  • Unit Conversion Example Problems
  • Chemistry Worksheets
  • Biology Worksheets
  • Periodic Table Worksheets
  • Physical Science Worksheets
  • Science Lab Worksheets
  • My Amazon Books

Scientific Law Definition and Examples

Scientific Law vs Scientific Theory

A scientific law is a statement or mathematical equation that describes or predicts a natural phenomenon. It does not explain why or how a phenomenon occurs. Another name for a scientific law is a law of nature or law of science . All scientific laws are based on empirical evidence and the scientific method. In science, an assertion can be disproven, but never proven, so it’s possible for a scientific law to be revised or disproven by future experiments. In contrast, a mathematical theorem or identity is proven to be true.

Examples of Scientific Laws

There are laws in all scientific disciplines, although primarily they are physical laws. Here are some examples:

  • Beer’s law
  • Dalton’s law of partial pressures
  • Ideal gas law
  • Kepler’s laws of planetary motion
  • Law of conservation of mass
  • Law of conservation of energy
  • Law of conservation of momentum
  • Law of reflection
  • Laws of thermodynamics
  • Newton’s law of universal gravitation
  • Newton’s laws of motion

Difference Between a Scientific Law and Scientific Theory

Both scientific laws and scientific theories are based in the scientific method and are falsifiable. However, the two terms have very different meanings. A law describes what happens, but does not explain it. A theory explains how or why something works.

For example, Newton’s law of universal gravitation describes what happens when two masses are a given distance apart. The law can be written as a mathematical equation [F = G(m 1 m 2 /r 2 )] and used to make predictions and calculations. However, the law does not explain how gravity works or why two masses are attracted to one another. Scientists didn’t really have an explanation for gravity until Einstein’s theory of general relativity, which continues to be revised as we understand more about the nature of spacetime.

As another example, Hubble’s law of Cosmic Expansion (velocity = Hubble constant x distance) describes the movement of galaxies away from each other. It does explain why this occurs. The Big Bang Theory is one of the theories that explains why galaxies move apart, but the theory does not offer a formula for calculating this motion.

Can a Hypothesis or Theory Become a Law?

A hypothesis , theory, and law are all parts of scientific inquiry, but one never becomes another . They are different things. A hypothesis never becomes a theory, no matter how many experiments support it, because a hypothesis is simply a prediction about how one variable responds when another is changed. A theory takes into account the results of many experiments, testing different hypotheses. A theory explains how something works. Like a theory, a law draws on the results of repeated observations and experiments. But, a law states in words or mathematical equations what happens. Laws don’t explain why.

  • Barrow, John (1991). Theories of Everything: The Quest for Ultimate Explanations . ISBN 0-449-90738-4.
  • Feynman, Richard (1994). The Character of Physical Law (Modern Library ed.). New York: Modern Library. ISBN 978-0-679-60127-2.
  • Gould, Stephen Jay (1981). “ Evolution as Fact and Theory “. Discover . 2 (5): 34–37.
  • McComas, William F. (2013). The Language of Science Education: An Expanded Glossary of Key Terms and Concepts in Science Teaching and Learning. Springer Science & Business Media. ISBN 978-94-6209-497-0.

Related Posts

Theories, Hypotheses, and Laws: Definitions, examples, and their roles in science

by Anthony Carpi, Ph.D., Anne E. Egger, Ph.D.

Listen to this reading

Did you know that the idea of evolution had been part of Western thought for more than 2,000 years before Charles Darwin was born? Like many theories, the theory of evolution was the result of the work of many different scientists working in different disciplines over a period of time.

A scientific theory is an explanation inferred from multiple lines of evidence for some broad aspect of the natural world and is logical, testable, and predictive.

As new evidence comes to light, or new interpretations of existing data are proposed, theories may be revised and even change; however, they are not tenuous or speculative.

A scientific hypothesis is an inferred explanation of an observation or research finding; while more exploratory in nature than a theory, it is based on existing scientific knowledge.

A scientific law is an expression of a mathematical or descriptive relationship observed in nature.

Imagine yourself shopping in a grocery store with a good friend who happens to be a chemist. Struggling to choose between the many different types of tomatoes in front of you, you pick one up, turn to your friend, and ask her if she thinks the tomato is organic . Your friend simply chuckles and replies, "Of course it's organic!" without even looking at how the fruit was grown. Why the amused reaction? Your friend is highlighting a simple difference in vocabulary. To a chemist, the term organic refers to any compound in which hydrogen is bonded to carbon. Tomatoes (like all plants) are abundant in organic compounds – thus your friend's laughter. In modern agriculture, however, organic has come to mean food items grown or raised without the use of chemical fertilizers, pesticides, or other additives.

So who is correct? You both are. Both uses of the word are correct, though they mean different things in different contexts. There are, of course, lots of words that have more than one meaning (like bat , for example), but multiple meanings can be especially confusing when two meanings convey very different ideas and are specific to one field of study.

  • Scientific theories

The term theory also has two meanings, and this double meaning often leads to confusion. In common language, the term theory generally refers to speculation or a hunch or guess. You might have a theory about why your favorite sports team isn't playing well, or who ate the last cookie from the cookie jar. But these theories do not fit the scientific use of the term. In science, a theory is a well-substantiated and comprehensive set of ideas that explains a phenomenon in nature. A scientific theory is based on large amounts of data and observations that have been collected over time. Scientific theories can be tested and refined by additional research , and they allow scientists to make predictions. Though you may be correct in your hunch, your cookie jar conjecture doesn't fit this more rigorous definition.

All scientific disciplines have well-established, fundamental theories . For example, atomic theory describes the nature of matter and is supported by multiple lines of evidence from the way substances behave and react in the world around us (see our series on Atomic Theory ). Plate tectonic theory describes the large scale movement of the outer layer of the Earth and is supported by evidence from studies about earthquakes , magnetic properties of the rocks that make up the seafloor , and the distribution of volcanoes on Earth (see our series on Plate Tectonic Theory ). The theory of evolution by natural selection , which describes the mechanism by which inherited traits that affect survivability or reproductive success can cause changes in living organisms over generations , is supported by extensive studies of DNA , fossils , and other types of scientific evidence (see our Charles Darwin series for more information). Each of these major theories guides and informs modern research in those fields, integrating a broad, comprehensive set of ideas.

So how are these fundamental theories developed, and why are they considered so well supported? Let's take a closer look at some of the data and research supporting the theory of natural selection to better see how a theory develops.

Comprehension Checkpoint

  • The development of a scientific theory: Evolution and natural selection

The theory of evolution by natural selection is sometimes maligned as Charles Darwin 's speculation on the origin of modern life forms. However, evolutionary theory is not speculation. While Darwin is rightly credited with first articulating the theory of natural selection, his ideas built on more than a century of scientific research that came before him, and are supported by over a century and a half of research since.

  • The Fixity Notion: Linnaeus

Figure 1: Cover of the 1760 edition of Systema Naturae.

Figure 1: Cover of the 1760 edition of Systema Naturae .

Research about the origins and diversity of life proliferated in the 18th and 19th centuries. Carolus Linnaeus , a Swedish botanist and the father of modern taxonomy (see our module Taxonomy I for more information), was a devout Christian who believed in the concept of Fixity of Species , an idea based on the biblical story of creation. The Fixity of Species concept said that each species is based on an ideal form that has not changed over time. In the early stages of his career, Linnaeus traveled extensively and collected data on the structural similarities and differences between different species of plants. Noting that some very different plants had similar structures, he began to piece together his landmark work, Systema Naturae, in 1735 (Figure 1). In Systema , Linnaeus classified organisms into related groups based on similarities in their physical features. He developed a hierarchical classification system , even drawing relationships between seemingly disparate species (for example, humans, orangutans, and chimpanzees) based on the physical similarities that he observed between these organisms. Linnaeus did not explicitly discuss change in organisms or propose a reason for his hierarchy, but by grouping organisms based on physical characteristics, he suggested that species are related, unintentionally challenging the Fixity notion that each species is created in a unique, ideal form.

  • The age of Earth: Leclerc and Hutton

Also in the early 1700s, Georges-Louis Leclerc, a French naturalist, and James Hutton , a Scottish geologist, began to develop new ideas about the age of the Earth. At the time, many people thought of the Earth as 6,000 years old, based on a strict interpretation of the events detailed in the Christian Old Testament by the influential Scottish Archbishop Ussher. By observing other planets and comets in the solar system , Leclerc hypothesized that Earth began as a hot, fiery ball of molten rock, mostly consisting of iron. Using the cooling rate of iron, Leclerc calculated that Earth must therefore be at least 70,000 years old in order to have reached its present temperature.

Hutton approached the same topic from a different perspective, gathering observations of the relationships between different rock formations and the rates of modern geological processes near his home in Scotland. He recognized that the relatively slow processes of erosion and sedimentation could not create all of the exposed rock layers in only a few thousand years (see our module The Rock Cycle ). Based on his extensive collection of data (just one of his many publications ran to 2,138 pages), Hutton suggested that the Earth was far older than human history – hundreds of millions of years old.

While we now know that both Leclerc and Hutton significantly underestimated the age of the Earth (by about 4 billion years), their work shattered long-held beliefs and opened a window into research on how life can change over these very long timescales.

  • Fossil studies lead to the development of a theory of evolution: Cuvier

Figure 2: Illustration of an Indian elephant jaw and a mammoth jaw from Cuvier's 1796 paper.

Figure 2: Illustration of an Indian elephant jaw and a mammoth jaw from Cuvier's 1796 paper.

With the age of Earth now extended by Leclerc and Hutton, more researchers began to turn their attention to studying past life. Fossils are the main way to study past life forms, and several key studies on fossils helped in the development of a theory of evolution . In 1795, Georges Cuvier began to work at the National Museum in Paris as a naturalist and anatomist. Through his work, Cuvier became interested in fossils found near Paris, which some claimed were the remains of the elephants that Hannibal rode over the Alps when he invaded Rome in 218 BCE . In studying both the fossils and living species , Cuvier documented different patterns in the dental structure and number of teeth between the fossils and modern elephants (Figure 2) (Horner, 1843). Based on these data , Cuvier hypothesized that the fossil remains were not left by Hannibal, but were from a distinct species of animal that once roamed through Europe and had gone extinct thousands of years earlier: the mammoth. The concept of species extinction had been discussed by a few individuals before Cuvier, but it was in direct opposition to the Fixity of Species concept – if every organism were based on a perfectly adapted, ideal form, how could any cease to exist? That would suggest it was no longer ideal.

While his work provided critical evidence of extinction , a key component of evolution , Cuvier was highly critical of the idea that species could change over time. As a result of his extensive studies of animal anatomy, Cuvier had developed a holistic view of organisms , stating that the

number, direction, and shape of the bones that compose each part of an animal's body are always in a necessary relation to all the other parts, in such a way that ... one can infer the whole from any one of them ...

In other words, Cuvier viewed each part of an organism as a unique, essential component of the whole organism. If one part were to change, he believed, the organism could not survive. His skepticism about the ability of organisms to change led him to criticize the whole idea of evolution , and his prominence in France as a scientist played a large role in discouraging the acceptance of the idea in the scientific community.

  • Studies of invertebrates support a theory of change in species: Lamarck

Jean Baptiste Lamarck, a contemporary of Cuvier's at the National Museum in Paris, studied invertebrates like insects and worms. As Lamarck worked through the museum's large collection of invertebrates, he was impressed by the number and variety of organisms . He became convinced that organisms could, in fact, change through time, stating that

... time and favorable conditions are the two principal means which nature has employed in giving existence to all her productions. We know that for her time has no limit, and that consequently she always has it at her disposal.

This was a radical departure from both the fixity concept and Cuvier's ideas, and it built on the long timescale that geologists had recently established. Lamarck proposed that changes that occurred during an organism 's lifetime could be passed on to their offspring, suggesting, for example, that a body builder's muscles would be inherited by their children.

As it turned out, the mechanism by which Lamarck proposed that organisms change over time was wrong, and he is now often referred to disparagingly for his "inheritance of acquired characteristics" idea. Yet despite the fact that some of his ideas were discredited, Lamarck established a support for evolutionary theory that others would build on and improve.

  • Rock layers as evidence for evolution: Smith

In the early 1800s, a British geologist and canal surveyor named William Smith added another component to the accumulating evidence for evolution . Smith observed that rock layers exposed in different parts of England bore similarities to one another: These layers (or strata) were arranged in a predictable order, and each layer contained distinct groups of fossils . From this series of observations , he developed a hypothesis that specific groups of animals followed one another in a definite sequence through Earth's history, and this sequence could be seen in the rock layers. Smith's hypothesis was based on his knowledge of geological principles , including the Law of Superposition.

The Law of Superposition states that sediments are deposited in a time sequence, with the oldest sediments deposited first, or at the bottom, and newer layers deposited on top. The concept was first expressed by the Persian scientist Avicenna in the 11th century, but was popularized by the Danish scientist Nicolas Steno in the 17th century. Note that the law does not state how sediments are deposited; it simply describes the relationship between the ages of deposited sediments.

Figure 3: Engraving from William Smith's 1815 monograph on identifying strata by fossils.

Figure 3: Engraving from William Smith's 1815 monograph on identifying strata by fossils.

Smith backed up his hypothesis with extensive drawings of fossils uncovered during his research (Figure 3), thus allowing other scientists to confirm or dispute his findings. His hypothesis has, in fact, been confirmed by many other scientists and has come to be referred to as the Law of Faunal Succession. His work was critical to the formation of evolutionary theory as it not only confirmed Cuvier's work that organisms have gone extinct , but it also showed that the appearance of life does not date to the birth of the planet. Instead, the fossil record preserves a timeline of the appearance and disappearance of different organisms in the past, and in doing so offers evidence for change in organisms over time.

  • The theory of evolution by natural selection: Darwin and Wallace

It was into this world that Charles Darwin entered: Linnaeus had developed a taxonomy of organisms based on their physical relationships, Leclerc and Hutton demonstrated that there was sufficient time in Earth's history for organisms to change, Cuvier showed that species of organisms have gone extinct , Lamarck proposed that organisms change over time, and Smith established a timeline of the appearance and disappearance of different organisms in the geological record .

Figure 4: Title page of the 1859 Murray edition of the Origin of Species by Charles Darwin.

Figure 4: Title page of the 1859 Murray edition of the Origin of Species by Charles Darwin.

Charles Darwin collected data during his work as a naturalist on the HMS Beagle starting in 1831. He took extensive notes on the geology of the places he visited; he made a major find of fossils of extinct animals in Patagonia and identified an extinct giant ground sloth named Megatherium . He experienced an earthquake in Chile that stranded beds of living mussels above water, where they would be preserved for years to come.

Perhaps most famously, he conducted extensive studies of animals on the Galápagos Islands, noting subtle differences in species of mockingbird, tortoise, and finch that were isolated on different islands with different environmental conditions. These subtle differences made the animals highly adapted to their environments .

This broad spectrum of data led Darwin to propose an idea about how organisms change "by means of natural selection" (Figure 4). But this idea was not based only on his work, it was also based on the accumulation of evidence and ideas of many others before him. Because his proposal encompassed and explained many different lines of evidence and previous work, they formed the basis of a new and robust scientific theory regarding change in organisms – the theory of evolution by natural selection .

Darwin's ideas were grounded in evidence and data so compelling that if he had not conceived them, someone else would have. In fact, someone else did. Between 1858 and 1859, Alfred Russel Wallace , a British naturalist, wrote a series of letters to Darwin that independently proposed natural selection as the means for evolutionary change. The letters were presented to the Linnean Society of London, a prominent scientific society at the time (see our module on Scientific Institutions and Societies ). This long chain of research highlights that theories are not just the work of one individual. At the same time, however, it often takes the insight and creativity of individuals to put together all of the pieces and propose a new theory . Both Darwin and Wallace were experienced naturalists who were familiar with the work of others. While all of the work leading up to 1830 contributed to the theory of evolution , Darwin's and Wallace's theory changed the way that future research was focused by presenting a comprehensive, well-substantiated set of ideas, thus becoming a fundamental theory of biological research.

  • Expanding, testing, and refining scientific theories
  • Genetics and evolution: Mendel and Dobzhansky

Since Darwin and Wallace first published their ideas, extensive research has tested and expanded the theory of evolution by natural selection . Darwin had no concept of genes or DNA or the mechanism by which characteristics were inherited within a species . A contemporary of Darwin's, the Austrian monk Gregor Mendel , first presented his own landmark study, Experiments in Plant Hybridization, in 1865 in which he provided the basic patterns of genetic inheritance , describing which characteristics (and evolutionary changes) can be passed on in organisms (see our Genetics I module for more information). Still, it wasn't until much later that a "gene" was defined as the heritable unit.

In 1937, the Ukrainian born geneticist Theodosius Dobzhansky published Genetics and the Origin of Species , a seminal work in which he described genes themselves and demonstrated that it is through mutations in genes that change occurs. The work defined evolution as "a change in the frequency of an allele within a gene pool" ( Dobzhansky, 1982 ). These studies and others in the field of genetics have added to Darwin's work, expanding the scope of the theory .

  • Evolution under a microscope: Lenski

More recently, Dr. Richard Lenski, a scientist at Michigan State University, isolated a single Escherichia coli bacterium in 1989 as the first step of the longest running experimental test of evolutionary theory to date – a true test meant to replicate evolution and natural selection in the lab.

After the single microbe had multiplied, Lenski isolated the offspring into 12 different strains , each in their own glucose-supplied culture, predicting that the genetic make-up of each strain would change over time to become more adapted to their specific culture as predicted by evolutionary theory . These 12 lines have been nurtured for over 40,000 bacterial generations (luckily bacterial generations are much shorter than human generations) and exposed to different selective pressures such as heat , cold, antibiotics, and infection with other microorganisms. Lenski and colleagues have studied dozens of aspects of evolutionary theory with these genetically isolated populations . In 1999, they published a paper that demonstrated that random genetic mutations were common within the populations and highly diverse across different individual bacteria . However, "pivotal" mutations that are associated with beneficial changes in the group are shared by all descendants in a population and are much rarer than random mutations, as predicted by the theory of evolution by natural selection (Papadopoulos et al., 1999).

  • Punctuated equilibrium: Gould and Eldredge

While established scientific theories like evolution have a wealth of research and evidence supporting them, this does not mean that they cannot be refined as new information or new perspectives on existing data become available. For example, in 1972, biologist Stephen Jay Gould and paleontologist Niles Eldredge took a fresh look at the existing data regarding the timing by which evolutionary change takes place. Gould and Eldredge did not set out to challenge the theory of evolution; rather they used it as a guiding principle and asked more specific questions to add detail and nuance to the theory. This is true of all theories in science: they provide a framework for additional research. At the time, many biologists viewed evolution as occurring gradually, causing small incremental changes in organisms at a relatively steady rate. The idea is referred to as phyletic gradualism , and is rooted in the geological concept of uniformitarianism . After reexamining the available data, Gould and Eldredge came to a different explanation, suggesting that evolution consists of long periods of stability that are punctuated by occasional instances of dramatic change – a process they called punctuated equilibrium .

Like Darwin before them, their proposal is rooted in evidence and research on evolutionary change, and has been supported by multiple lines of evidence. In fact, punctuated equilibrium is now considered its own theory in evolutionary biology. Punctuated equilibrium is not as broad of a theory as natural selection . In science, some theories are broad and overarching of many concepts, such as the theory of evolution by natural selection; others focus on concepts at a smaller, or more targeted, scale such as punctuated equilibrium. And punctuated equilibrium does not challenge or weaken the concept of natural selection; rather, it represents a change in our understanding of the timing by which change occurs in organisms , and a theory within a theory. The theory of evolution by natural selection now includes both gradualism and punctuated equilibrium to describe the rate at which change proceeds.

  • Hypotheses and laws: Other scientific concepts

One of the challenges in understanding scientific terms like theory is that there is not a precise definition even within the scientific community. Some scientists debate over whether certain proposals merit designation as a hypothesis or theory , and others mistakenly use the terms interchangeably. But there are differences in these terms. A hypothesis is a proposed explanation for an observable phenomenon. Hypotheses , just like theories , are based on observations from research . For example, LeClerc did not hypothesize that Earth had cooled from a molten ball of iron as a random guess; rather, he developed this hypothesis based on his observations of information from meteorites.

A scientist often proposes a hypothesis before research confirms it as a way of predicting the outcome of study to help better define the parameters of the research. LeClerc's hypothesis allowed him to use known parameters (the cooling rate of iron) to do additional work. A key component of a formal scientific hypothesis is that it is testable and falsifiable. For example, when Richard Lenski first isolated his 12 strains of bacteria , he likely hypothesized that random mutations would cause differences to appear within a period of time in the different strains of bacteria. But when a hypothesis is generated in science, a scientist will also make an alternative hypothesis , an explanation that explains a study if the data do not support the original hypothesis. If the different strains of bacteria in Lenski's work did not diverge over the indicated period of time, perhaps the rate of mutation was slower than first thought.

So you might ask, if theories are so well supported, do they eventually become laws? The answer is no – not because they aren't well-supported, but because theories and laws are two very different things. Laws describe phenomena, often mathematically. Theories, however, explain phenomena. For example, in 1687 Isaac Newton proposed a Theory of Gravitation, describing gravity as a force of attraction between two objects. As part of this theory, Newton developed a Law of Universal Gravitation that explains how this force operates. This law states that the force of gravity between two objects is inversely proportional to the square of the distance between those objects. Newton 's Law does not explain why this is true, but it describes how gravity functions (see our Gravity: Newtonian Relationships module for more detail). In 1916, Albert Einstein developed his theory of general relativity to explain the mechanism by which gravity has its effect. Einstein's work challenges Newton's theory, and has been found after extensive testing and research to more accurately describe the phenomenon of gravity. While Einstein's work has replaced Newton's as the dominant explanation of gravity in modern science, Newton's Law of Universal Gravitation is still used as it reasonably (and more simply) describes the force of gravity under many conditions. Similarly, the Law of Faunal Succession developed by William Smith does not explain why organisms follow each other in distinct, predictable ways in the rock layers, but it accurately describes the phenomenon.

Theories, hypotheses , and laws drive scientific progress

Theories, hypotheses , and laws are not simply important components of science, they drive scientific progress. For example, evolutionary biology now stands as a distinct field of science that focuses on the origins and descent of species . Geologists now rely on plate tectonics as a conceptual model and guiding theory when they are studying processes at work in Earth's crust . And physicists refer to atomic theory when they are predicting the existence of subatomic particles yet to be discovered. This does not mean that science is "finished," or that all of the important theories have been discovered already. Like evolution , progress in science happens both gradually and in short, dramatic bursts. Both types of progress are critical for creating a robust knowledge base with data as the foundation and scientific theories giving structure to that knowledge.

Table of Contents

  • Theories, hypotheses, and laws drive scientific progress

Activate glossary term highlighting to easily identify key terms within the module. Once highlighted, you can click on these terms to view their definitions.

Activate NGSS annotations to easily identify NGSS standards within the module. Once highlighted, you can click on them to view these standards.

The Scientific Hypothesis

The Key to Understanding How Science Works

Hypotheses, Theories, Laws (and Models)… What’s the difference?

Untold hours have been spent trying to sort out the differences between these ideas. should we bother.

Ask what the differences between these concepts are and you’re likely to encounter a raft of distinctions; typically with charts and ladders of generality leading from hypotheses to theories and, ultimately, to laws.   Countless students have been exposed to and forced to learn how the schemes are set up.  Theories are said to be well-tested hypotheses, or maybe whole collections of linked hypotheses, and laws, well, laws are at the top of the heap, the apex of science having enormous reach, quantitative predictive power, and validity.  It all seems so clear.

Yet there are many problems with the general scheme.  For one thing, it is never quite explained how a hypothesis turns into a theory or law and, consequently, the boundaries are blurry, and definitions tend vary with the speaker.  And there is no consistency in usage across fields, I’ll give some examples in a minute.  There are branches of science that have few if any theories and no laws – neuroscience comes to mind – though no one doubts that neuroscience is a bona fide science that has discovered great quantities of reliable and useful information and wide-ranging generalizations.  At the other extreme, there are sciences that spin out theories at a dizzying pace – psychology, for instance – although the permanence and indeed the veracity of psychological theories are rarely on par with those of physics or chemistry.

Some people will tell you that theories and laws are “more quantitative” than hypotheses, but the most famous theory in biology, the Theory of Evolution, which is based on concepts such as heritability, genetic variability, natural selection, etc. is not as neatly expressible in quantitative terms as is Newton’s Theory of Gravity, for example.   And what do we make of the fact that Newton’s “Law of Gravity” was superceded by Einstein’s “General Theory (not Law) of Relativity?”

What about the idea that a hypothesis is a low-level explanation that somehow transmogrifies into a theory when conditions are right?  Even this simple rule is not adhered to.  Take geology (or “geoscience” nowadays):  We have the Alvarez Hypothesis about how an asteroid slamming into the earth caused the extinction of dinosaurs and other life-forms ~66 million years ago.  The Alvarez Hypothesis explains, often in quantitative detail, many important phenomena and makes far-reaching predictions, most remarkably of a crater, which was eventually found in the Yucatan peninsula, that has the right age and size to be the site of an extinction-causing asteroid impact.  The Alvarez Hypothesis has been rigorously tested many times since it was proposed, without having been promoted to a theory. 

But perhaps the Alvarez Hypothesis is still thought to be a tentative explanation, not yet worthy of a more exalted status? It seems that the same can’t be said about the idea that the earth’s crust consists of 12 or so rigid “plates” of solid material that drift around very slowly and create geological phenomena, such as mountain ranges and earth-quakes, when they crash into each other.  This is called either the “Plate Tectonics Hypothesis” or “Plate Tectonics Theory” by different authors.  Same data, same interpretations, same significance, different names. 

And for anyone trying to make sense of the hypothesis-theory-law progression, it must be highly confusing to learn that the crowning achievement of modern physics – itself the “queen of the sciences” – is a complex, extraordinarily precise, quantitative structure is known as the Standard Model of Particle Physics, not the Standard Theory, or the Standard Law!  The Standard Model incorporates three of the four major forces of nature, describes many subatomic particles, and has successfully predicted numerous subtle properties of subatomic particles.  Does this mean that “model” now implies a large, well-worked out and self-consistent body of scientific knowledge?  Not at all; in fact, “model” and “hypothesis” are used interchangeably at the simplest levels of experimental investigation in biology, neuroscience, etc., so definition-wise, we’re back to the beginning.

The reason that the Standard Model is a model and not a theory seems basically to be the same as the reason that the Alvarez Hypothesis is a hypothesis and not a theory or that Evolution is a theory and not a law:  essentially it is a matter of convention, tradition, or convenience.  The designations, we can infer, are primarily names that lack exact substantive, generally agreed-on definitions.

So, rather than worrying about any profound distinctions between hypotheses, theories, laws (and models) it might be more helpful to look at the properties that they have in common:

1. They are all “conjectural” which, for the moment, means that they are inventions of the human mind.

2. They make specific predictions that are empirically testable, in principle.

3. They are falsifiable – if their predictions are false, they are false – though not provable, by experiment or observation. 

4.  As a consequence of point 3., hypotheses, theories, and laws are all provisional; they may be replaced as further information becomes available. 

“Hypothesis,” it seems to me, is the fundamental unit, the building block, of scientific thinking. It is the term that is most consistently used by all sciences; it is more basic than any theory; it carries the least baggage, is the least susceptible to multiple interpretations and, accordingly, is the most likely to communicate effectively.  These advantages are relative of course; as I’ll get into elsewhere, even “hypothesis” is the subject of misinterpretation. In any case, its simplicity and clarity are why this website is devoted to the Scientific Hypothesis and not the others.

Leave a Reply Cancel reply

You must be logged in to post a comment.

hypothesis theory vs law

  • Comment Rules
  • Global Warming
  • Nature of Science
  • Vaccines/Alt. Medicines

Facts, Hypotheses, Theories, and Laws: What’s the Difference?

Perhaps no topic in science garners more confusion among the general public than the distinction between a theory and a hypothesis. This confusion is highly regrettable, because the distinction is one of the most fundamental concepts in science, and a lack of understanding about these definitions leads to a great deal of confusion. Therefore, I will attempt to alleviate the maelstrom of nonsense and bewilderment surrounding these terms and endow my readers with a proper understanding of their meanings.

Let’s begin with the definition of “fact.” This is actually the hardest of these terms to define. Basically, it’s just something that has been observed and tested and shown to be true. Importantly, facts generally don’t offer explanations, they are just how things are. If we want an explanation of why things are the way that they are, we have to turn to hypotheses and theories.

This is where most people mess up. In the common vernacular, a theory is “an educated guess,” but in science, an educated guess is a hypothesis, not a theory. Further, when I ask my students to define a theory, I often get answers like, “something that we think is true, but haven’t tested,” or even worse, “an idea that can’t be tested.” Television further reinforces these misconceptions, by constantly misusing “theory.” In virtually every episode of shows like “House M.D.” and “Bones” someone says, “my theory is that…” The reality is that in science, a theory is much, much more than just an educated guess. In fact, theories are the highest form of scientific certainty. They have been rigorously test over and over again and they have been shown to have a very high predictive power. In other words, they consistently and accurately predict the outcomes of experiments.

For example, suppose that I am currently holding a pen in the air. What will happen if I release my hand? Hopefully, you all thought, “the pen will drop,” but why did you make that prediction? In fact, you were simply applying the theory of universal gravity. This is the theory that all bodies produce gravity and are acted upon by the gravity of other bodies. Also note that by dropping the pen, I would demonstrate the fact of gravity. In other words, it is a fact that gravity took hold of the pen and caused it to fall. To explain that fact, we apply the theory of universal gravity which tells us that the earth produces a field of gravity which attracted the pen (in reality of course the theory also tells us the exact rate of acceleration of the pen). So you see, we use theories to explain facts. As such, they actually supersede facts in their certainty and importance.

So if a theory is an explanatory framework with a high predictive power, what then is a hypothesis? A hypothesis is basically an educated guess. It’s a possible explanation that hasn’t yet achieved the certainty of a theory. There may be experimental support behind it, but not on the level that a theory has. It is, however, entirely possible for a hypothesis to become a theory once enough evidence has been accumulated.

At this point, you all are probably wondering what a law is, because my explanation of a theory probably sounds a lot like what you expected for the definition of a law, and there is a very good reason for that. Namely, the terms “theory” and “law” are essentially synonymous. “Law” is an older term that we don’t use as much anymore, but it has the same level of certainty as a theory. For example, the law of universal gravity and the theory of universal gravity are synonyms. They mean the exact same thing and either one is equally correct.

So why does this matter? Other than scientists, who really cares if people say “theory” when they mean “hypothesis?” The reality is that this confusion leads to a great many misunderstandings and faulty arguments. The most prominent example is the argument that, “evolution shouldn’t be being taught as a fact because it’s just a theory.” As we’ve just seen, theories are actually our highest form of scientific certainty, and they actually supersede facts because they explain the facts. So saying, “evolution is just a theory” is no different from saying, “gravity is just a law.” Theories make up the cornerstones of every branch of science. For example, the germ theory of disease states that viruses, bacteria, etc. make us sick, cell theory states that all living things are made of cells, atomic theory states that all matter is made of atoms, etc. Obviously, there aren’t any outcries about people teaching the notion that matter is made of elements as a fact, even though its “just a theory.” Further, all theories contain a factual component because they explain the facts (I illustrated this previously with my gravity example). So, when it comes to evolution, the idea that life on this planet has slowly changed over millions of years is considered scientific fact. We have ample evidence for it from fossils, genetics, etc. The theory is the “theory of evolution by natural selection” which states that natural selection has been the primary driver of evolution. So the core thing that most creationists oppose (i.e., the idea that life has evolved) is not a theory, it is a fact. The theory of natural selection simply explains what caused those changes to take place.

In summary, a fact is a tested and confirmed observation or measurement. A hypothesis is basically an educated guess, and the terms theory and law synonymously describe a thoroughly tested explanatory framework which has a high predictive power and explains facts.

Share this:

  • Search for:
Follow The Logic of Science on Facebook.

Follow The Logic of Science via Email

Enter your email address to follow this blog and receive notifications of new posts by email.

Email Address:

  • May 2024  (1)
  • April 2024  (1)
  • January 2024  (1)
  • September 2022  (1)
  • July 2022  (1)
  • January 2022  (2)
  • August 2021  (1)
  • July 2021  (1)
  • June 2021  (2)
  • March 2021  (1)
  • October 2020  (1)
  • September 2020  (2)
  • August 2020  (1)
  • June 2020  (2)
  • May 2020  (1)
  • April 2020  (1)
  • February 2020  (1)
  • January 2020  (1)
  • November 2019  (2)
  • September 2019  (2)
  • August 2019  (2)
  • July 2019  (2)
  • May 2019  (1)
  • March 2019  (3)
  • February 2019  (2)
  • January 2019  (2)
  • December 2018  (1)
  • October 2018  (1)
  • September 2018  (1)
  • August 2018  (3)
  • July 2018  (3)
  • June 2018  (2)
  • March 2018  (3)
  • February 2018  (1)
  • January 2018  (1)
  • December 2017  (2)
  • November 2017  (1)
  • October 2017  (3)
  • September 2017  (1)
  • August 2017  (2)
  • July 2017  (1)
  • June 2017  (3)
  • May 2017  (2)
  • April 2017  (3)
  • March 2017  (3)
  • February 2017  (3)
  • January 2017  (4)
  • December 2016  (2)
  • November 2016  (2)
  • October 2016  (5)
  • September 2016  (2)
  • August 2016  (5)
  • July 2016  (4)
  • June 2016  (5)
  • May 2016  (2)
  • April 2016  (3)
  • March 2016  (6)
  • February 2016  (4)
  • January 2016  (4)
  • December 2015  (4)
  • November 2015  (5)
  • October 2015  (4)
  • September 2015  (4)
  • August 2015  (5)
  • July 2015  (4)
  • June 2015  (2)
  • May 2015  (3)
  • April 2015  (6)
  • March 2015  (8)
  • February 2015  (10)
  • January 2015  (17)
  • ad hoc fallacies
  • alternative medicine
  • anecdotal evidence
  • anti vaccine arguments
  • appeal to antiquity fallacies
  • appeal to authority fallacies
  • appeal to emotion fallacies
  • appeal to nature fallacies
  • argument from ignorance fallacies
  • Bad arguments
  • burden of proof
  • cherry picking
  • conflict of interest
  • creationism
  • evaluating evidence
  • global climate change
  • logical fallacies
  • natural selection
  • peer-reviewed studies
  • post hoc ergo propter hoc fallacies
  • rules of logic
  • scientific consensus

' src=

  • Already have a WordPress.com account? Log in now.
  • Subscribe Subscribed
  • Copy shortlink
  • Report this content
  • View post in Reader
  • Manage subscriptions
  • Collapse this bar

The Difference Between a Scientific Hypothesis, Theory, and Law

Let’s address some common misconceptions about the basic concepts of science..

Maia Mulko

Totojang/iStock

Nobody is exempt from misunderstanding scientific concepts and/or applying them incorrectly. Statistics from the National Science Board show that Americans scored an average of 5.6 over 9 true-or-false and multiple-choice science-related questions in 2016. Because of the low number of questions, the study is better at differentiating low and medium levels of knowledge than those with higher levels of knowledge. However, the r esults weren’t much different in previous studies, suggesting that Americans generally have had the same basic levels of science literacy since the beginning of the century.

In this context, we’d like to clear up and emphasize the distinctions between scientific hypothesis, theory, and law, and why you shouldn’t use these terms interchangeably. 

Hypothesis: the core of the scientific method

The scientific method is an empirical procedure that consists of systematic observation, measurement, and experiment, and the formulation, testing, and modification of hypotheses.  It’s a process that’s meant to ensure that the collection of evidence, results, and conclusions are not biased by subjective views and can be repeated consistently by others.

Although there might be variations due to the requirements of each branch of science, the steps of the scientific method are more or less the same.

The scientific method often starts with an observation or asking a question, such as the observation of certain natural phenomena or asking why a particular phenomenon exists or why it occurs in a particular way.

Observation motivates a question and the question motivates an initial hypothesis. The initial hypothesis is a conjecture that works as a temporary answer to the question, formulated via induction on the basis of what’s been observed. 

To better understand this, let’s take the case of physician Ignaz Semmelweis. In mid-19th Century, he worked at the First Obstetrical Clinic of Vienna General Hospital, where 10% of women in labor died due to puerperal fever. Meanwhile, the Second Obstetrical Clinic had an average maternal mortality rate of 4%. Semmelweis asked himself why there was a discrepancy in mortality rates between the two clinics. 

Semmelweis

  Through observation, he determined and eliminated a number of differences between the two clinics. Because the techniques, climate, etc., were pretty much the same in both places, he ended up concluding that it had something to do with the health workers who helped women in labor. In the Second Clinic, births were attended only by midwives, while in the First Clinic, births were often attended by medical students who also performed autopsies. Semmelweis came up with the hypothesis that medical students spread “cadaveric contamination” in the First Clinic and this was causing the puerperal fever. 

He ordered all medical students to wash their hands with chlorinated lime after performing autopsies, and the mortality rate in the First Clinic decreased by 90%. 

Semmelweis is considered one of the early pioneers of antiseptic procedures .

This story doesn’t only demonstrate the importance of the initial hypothesis, but also the importance of testing it through experiments, field studies, observational studies, or other experimental work. In fact, this is the next step in the scientific method, and it’s essential to draw conclusions. 

Theory: the Why and How of natural phenomena

A scientific theory can be defined as a series of repeatedly tested and verified hypotheses and concepts. Scientific theories are based on hypotheses that are constructed and tested using the scientific method, and which may bring together a number of facts and hypotheses.

A theory synthesizes the discovered facts about phenomena in a way that allows scientists to formulate predictions and develop new hypotheses. For example, we can hypothesize the reasons why an animal looks or acts in a certain way based on Darwin’s theory of evolution. Or we can predict that antiseptics will prevent diseases if we take into account the germ theory . The confirmation of these hypotheses and predictions reinforces the theories they’re based on.

Evolution

For a theory to be valid, it must be testable, hold true for general tendencies and not only to specific cases, and it must not contradict verified pre-existing theories and laws. 

Law: the patterns of nature

In general, a scientific law is  the description of an observed phenomenon. It doesn’t explain why the phenomenon exists or what causes it. Laws can be thought of as the starting place, the point from where questions like “why” and “how” are asked.

For example, we can throw a ball under certain conditions and predict its movement by taking into account Newton’s laws of motion . These laws do not only involve several statements but also equations and formulas.  However, while Newton’s laws might mathematically describe how two bodies interact with each other, they don’t explain what gravity is, or how it works. 

Newton

Contrary to popular belief, scientific laws are not immutable. They must be universal and absolute to qualify as laws, but they can be corrected or extended to make them more accurate. For example, Euler’s laws of motion amplify Newton’s laws of motion to rigid bodies ,  and how gravity works was only understood in more detail when Albert Einstein developed the Theory of Relativity.

RECOMMENDED ARTICLES

Common misconceptions about scientific laws, theories, and hypotheses.

  • There is a hierarchy between laws, theories, and hypotheses: Some people think that hypotheses “evolve” into theories and theories “evolve” into laws. While a number of verified hypotheses can be included in a theory, it’s never only one. And theories do not turn into scientific laws because they’re simply different concepts. As stated above, theories explain phenomena and laws reflect patterns. 

You don’t have to be a scientist to understand scientific terms. In the information era, scientific concepts surround us, but even if access to knowledge is easier than ever nowadays, there are still a lot of misconceptions around. It’s always better to be on the safe side and getting your facts straight. 

The Blueprint Daily

Stay up-to-date on engineering, tech, space, and science news with The Blueprint.

By clicking sign up, you confirm that you accept this site's Terms of Use and Privacy Policy

ABOUT THE EDITOR

Maia Mulko Maia is a bilingual freelance writer and copywriter with a degree in Communication Studies. Although she has written for several different niches and publications, she spent most of her career writing for Descentralizar, a Spanish publication that investigates stories at the intersection of technology and society. She has also written scripts for a wide variety of science-related YouTube channels. Maia is particularly interested in space, AI, mobility, gaming, robotics, and assistive technologies. 

POPULAR ARTICLES

Us: fbi upgrading drones with loud bang capability for tactical missions, harrier and f-35b: mastering vertical takeoff and landing in modern warfare, the ai gold rush: why texas bitcoin miners are abandoning crypto, deep orange 15: us army unveils student-built autonomous rescue vehicle, related articles.

LongWriter: New AI large language model capable of producing 10,000-word texts

LongWriter: New AI large language model capable of producing 10,000-word texts

Paired electron ‘dance’ can help create room-temperature superconductors

Paired electron ‘dance’ can help create room-temperature superconductors

New method to check fuel cell degradation can improve hydrogen vehicle’s life

New method to check fuel cell degradation can improve hydrogen vehicle’s life

Threat: Arctic permafrost melting emits harmful mercury in Alaska’s Yukon River

Threat: Arctic permafrost melting emits harmful mercury in Alaska’s Yukon River

  • View on Facebook Page (Opens in a new tab)
  • View our Twitter Page (Opens in a new tab)
  • View our Instagram Page (Opens in a new tab)
  • View our Youtube Page (Opens in a new tab)

The Difference Between a Fact, Hypothesis, Theory, and Law In Science

Words like “fact,” “theory,” and “law,” get thrown around a lot. When it comes to science, however, they mean something very specific; and knowing the difference between them can help you better understand the world of science as a whole.

In this fantastic video from the It’s Okay To Be Smart YouTube channel , host Joe Hanson clears up some of the confusion surrounding four very important scientific terms: fact, hypothesis, theory, and law. Knowing the difference between these words is the key to understanding news, studies, and any other information that comes from the scientific community. Here are the main takeaways:

Fact: Observations about the world around us. Example: “It’s bright outside.”

Hypothesis: A proposed explanation for a phenomenon made as a starting point for further investigation. Example: “It’s bright outside because the sun is probably out.”

Theory: A well-substantiated explanation acquired through the scientific method and repeatedly tested and confirmed through observation and experimentation. Example: “When the sun is out, it tends to make it bright outside.”

Law: A statement based on repeated experimental observations that describes some phenomenon of nature. Proof that something happens and how it happens, but not why it happens. Example: Newton’s Law of Universal Gravitation .

Essentially, this is how all science works. You probably knew some of this, or remember bits and pieces of it from grade school, but this video does a great job of explaining the entire process. When you know how something actually works, it makes it a lot easier to understand and scrutinize .

Theory vs. Hypothesis vs. Law... Explained! | YouTube

Science Connected Magazine

Science Connected Magazine

Science Literacy, Education, Communication

Theory vs. Hypothesis vs. Law… Explained!

Theory vs. Hypothesis vs. Law… Explained! --Joe Hanson, Ph.D.

Some people try to attack things like evolution by natural selection and man-made climate change by saying “Oh, that’s just a THEORY!”

Yes, they are both theories. Stop saying it like it’s a bad thing! It’s time to learn the difference between a fact, a theory, a hypothesis, and a scientific law.

Special thanks to Joe Hanson, Ph.D., for allowing us to publish his terrific videos.

It’s Okay To Be Smart is written and hosted by Joe Hanson, Ph.D. @jtotheizzoe Facebook: http://www.facebook.com/itsokaytobesmart For more awesome science, check out: http://www.itsokaytobesmart.com Produced by PBS Digital Studios: http://www.youtube.com/user/pbsdigita…

Joe Hanson – Creator/Host/Writer Joe Nicolosi – Director Amanda Fox – Producer, Spotzen Inc. Kate Eads – Producer Andrew Matthews – Editing/Motion Graphics/Animation Katie Graham – Camera John Knudsen – Gaffer

Theme music: “Ouroboros” by Kevin MacLeod

Other music via APM Stock images from Shutterstock, stock footage from Videoblocks (unless otherwise noted)

Spoiler Alert: A Scientific Hypothesis, Theory, and Law Are Not the Same Thing

You need to understand this to understand science..

NASA

Defining Science

When reading scientific articles (and many other articles on Futurism ), you'll likely to come across the terms "hypothesis," "theory," " and "law." In the scientific community, these words have very specific definitions; however, once you get outside the scientific community, these definitions can be unclear, as the same terms are used differently in a colloquial context.

This is a bit of a problem.

People frequently try to discredit Charles Darwin's greatest work by saying that "evolution is just a hypothesis." — No, it's not.

People frequently try to elevate the (totally absurd and non-scientific) simulation hypothesis by calling it "simulation theory."  — Saying that reality might actually just be a giant computer simulation is definitely  not  a scientific theory.

So, what does it mean when you call something a hypothesis, a theory, or a law?

A hypothesis is a reasonable guess based on something that you observe in the natural world. And while hypotheses are proven and disproven all of the time, the fact that they are disproven shouldn't be read as a statement against them. In truth, hypotheses are the foundation of the scientific method.

As a refresher, here's how the scientific method works: After making an observation and formulating a question, a scientist must create a hypothesis — a potential answer to the question. They then make a testable prediction, test this prediction (over and over and over), and analyze the data. Once this is done, they can then state whether or not their hypothesis was correct.

Even then, a hypothesis needs to be tested and retested many times by many different experts before it is generally accepted in the scientific community as being true.

Example: You observe that, upon waking up each morning, your trash is overturned and junk is spread around the yard. You form a hypothesis that raccoons are responsible. Through testing — maybe you stay up all night to watch for raccoons — the results will either support or refute your hypothesis.

The above example illustrates why the simulation hypothesis is  not  science (and definitely not a scientific theory) .  There's nothing to observe. There's nothing to test. Like the idea of God or an immortal soul, it is beyond the natural world and, so, beyond the realm of science.

The Times and Troubles of the Scientific Method

A scientific theory consists of one or more hypotheses that have been supported by repeated testing. Theories are one of the pinnacles of science and are widely accepted in the scientific community as being true. A theory must never be shown to be wrong; if it is, the theory is disproven. Theories can also evolve . This doesn't mean the old theory was wrong. It's just that new information was discovered.

The evolution from  Newtonian physics to general relativity  is a good way to explain how new information can cause a theory to evolve into a more complete theory:

When Sir Isaac Newton discovered the theory of gravity and wrote laws that explained the motions of objects, he was not wrong about how the world worked, but he wasn’t fully right either. Albert Einstein later discovered the theories of special and general relativity — that the force of gravity exists due to the bending of spacetime, which is caused by massive objects. This created a more complete theory of gravity. In fact, when you stay far below the speed of light, many of the equations in general and special relativity give you Newton’s results, so Newton wasn't incorrect. He just had a partial answer.

So, what happens when you have two theories that contradict each other, such as the Steady State and Big Bang theories (the former says the universe's density doesn’t change over time and has no beginning or end, while the latter claims the universe is becoming increasingly less dense and started at some point in time).

In this case, scientists made observations, hypotheses, and testable predictions to figure out which theory was right. For example, one scientist might observe that the universe is expanding, hypothesize that it had a beginning, and test their hypothesis by doing the math. Eventually, either one theory is overturned completely (in this case, the Big Bang theory turned out to be correct), or the correct aspects of each theory are combined to form a new theory — one singular theory.

In many cases, one theory forms the foundation upon which other theories are built. An example is Einstein's theories of  general  and  special relativity. These theories lay the foundation for many, many other theories and equations (such as Hubble’s law and the Schwarzschild radius).

Scientific laws are short, sweet, and always true. They're often expressed in a single statement and generally rely on a concise mathematical equation.

Laws are accepted as being universal and are the cornerstones of science. They must never be wrong (that is why there are many theories and few laws). If a law were ever to be shown false, any science built on that law would also be wrong.

Examples of scientific laws (also called "laws of nature") include the laws of thermodynamics, Boyle’s law of gasses, the laws of gravitation.

What’s the difference between a scientific law and theory? - Matt Anticole

A law isn't better than a theory, or vice versa. They're just different, and in the end, all that matters is that they're used correctly.

A law is used to describe an action under certain circumstances. For example, evolution is a law — the law tells us that it happens but doesn't describe how or why.

A theory describes how and why something happens. For example, evolution by natural selection is a theory. It provides a host of descriptions for various mechanisms and describes the method by which evolution works.

Another example is Einstein’s famous equation E=mc^2. The equation is a law that describes the action of energy being converted to mass. The theories of special and general relativity, on the other hand, show how and why something with mass is unable to travel at the speed of light.

Hopefully, this has helped expand your understanding of what it means when scientists call something a hypothesis, a theory, or a law. And if you see someone in Internet Land using the terms inappropriately, please, shoot them this article.

Share This Article

This is the Difference Between a Hypothesis and a Theory

What to Know A hypothesis is an assumption made before any research has been done. It is formed so that it can be tested to see if it might be true. A theory is a principle formed to explain the things already shown in data. Because of the rigors of experiment and control, it is much more likely that a theory will be true than a hypothesis.

As anyone who has worked in a laboratory or out in the field can tell you, science is about process: that of observing, making inferences about those observations, and then performing tests to see if the truth value of those inferences holds up. The scientific method is designed to be a rigorous procedure for acquiring knowledge about the world around us.

hypothesis

In scientific reasoning, a hypothesis is constructed before any applicable research has been done. A theory, on the other hand, is supported by evidence: it's a principle formed as an attempt to explain things that have already been substantiated by data.

Toward that end, science employs a particular vocabulary for describing how ideas are proposed, tested, and supported or disproven. And that's where we see the difference between a hypothesis and a theory .

A hypothesis is an assumption, something proposed for the sake of argument so that it can be tested to see if it might be true.

In the scientific method, the hypothesis is constructed before any applicable research has been done, apart from a basic background review. You ask a question, read up on what has been studied before, and then form a hypothesis.

What is a Hypothesis?

A hypothesis is usually tentative, an assumption or suggestion made strictly for the objective of being tested.

When a character which has been lost in a breed, reappears after a great number of generations, the most probable hypothesis is, not that the offspring suddenly takes after an ancestor some hundred generations distant, but that in each successive generation there has been a tendency to reproduce the character in question, which at last, under unknown favourable conditions, gains an ascendancy. Charles Darwin, On the Origin of Species , 1859 According to one widely reported hypothesis , cell-phone transmissions were disrupting the bees' navigational abilities. (Few experts took the cell-phone conjecture seriously; as one scientist said to me, "If that were the case, Dave Hackenberg's hives would have been dead a long time ago.") Elizabeth Kolbert, The New Yorker , 6 Aug. 2007

What is a Theory?

A theory , in contrast, is a principle that has been formed as an attempt to explain things that have already been substantiated by data. It is used in the names of a number of principles accepted in the scientific community, such as the Big Bang Theory . Because of the rigors of experimentation and control, its likelihood as truth is much higher than that of a hypothesis.

It is evident, on our theory , that coasts merely fringed by reefs cannot have subsided to any perceptible amount; and therefore they must, since the growth of their corals, either have remained stationary or have been upheaved. Now, it is remarkable how generally it can be shown, by the presence of upraised organic remains, that the fringed islands have been elevated: and so far, this is indirect evidence in favour of our theory . Charles Darwin, The Voyage of the Beagle , 1839 An example of a fundamental principle in physics, first proposed by Galileo in 1632 and extended by Einstein in 1905, is the following: All observers traveling at constant velocity relative to one another, should witness identical laws of nature. From this principle, Einstein derived his theory of special relativity. Alan Lightman, Harper's , December 2011

Non-Scientific Use

In non-scientific use, however, hypothesis and theory are often used interchangeably to mean simply an idea, speculation, or hunch (though theory is more common in this regard):

The theory of the teacher with all these immigrant kids was that if you spoke English loudly enough they would eventually understand. E. L. Doctorow, Loon Lake , 1979 Chicago is famous for asking questions for which there can be no boilerplate answers. Example: given the probability that the federal tax code, nondairy creamer, Dennis Rodman and the art of mime all came from outer space, name something else that has extraterrestrial origins and defend your hypothesis . John McCormick, Newsweek , 5 Apr. 1999 In his mind's eye, Miller saw his case suddenly taking form: Richard Bailey had Helen Brach killed because she was threatening to sue him over the horses she had purchased. It was, he realized, only a theory , but it was one he felt certain he could, in time, prove. Full of urgency, a man with a mission now that he had a hypothesis to guide him, he issued new orders to his troops: Find out everything you can about Richard Bailey and his crowd. Howard Blum, Vanity Fair , January 1995

And sometimes one term is used as a genus, or a means for defining the other:

Laplace's popular version of his astronomy, the Système du monde , was famous for introducing what came to be known as the nebular hypothesis , the theory that the solar system was formed by the condensation, through gradual cooling, of the gaseous atmosphere (the nebulae) surrounding the sun. Louis Menand, The Metaphysical Club , 2001 Researchers use this information to support the gateway drug theory — the hypothesis that using one intoxicating substance leads to future use of another. Jordy Byrd, The Pacific Northwest Inlander , 6 May 2015 Fox, the business and economics columnist for Time magazine, tells the story of the professors who enabled those abuses under the banner of the financial theory known as the efficient market hypothesis . Paul Krugman, The New York Times Book Review , 9 Aug. 2009

Incorrect Interpretations of "Theory"

Since this casual use does away with the distinctions upheld by the scientific community, hypothesis and theory are prone to being wrongly interpreted even when they are encountered in scientific contexts—or at least, contexts that allude to scientific study without making the critical distinction that scientists employ when weighing hypotheses and theories.

The most common occurrence is when theory is interpreted—and sometimes even gleefully seized upon—to mean something having less truth value than other scientific principles. (The word law applies to principles so firmly established that they are almost never questioned, such as the law of gravity.)

This mistake is one of projection: since we use theory in general use to mean something lightly speculated, then it's implied that scientists must be talking about the same level of uncertainty when they use theory to refer to their well-tested and reasoned principles.

The distinction has come to the forefront particularly on occasions when the content of science curricula in schools has been challenged—notably, when a school board in Georgia put stickers on textbooks stating that evolution was "a theory, not a fact, regarding the origin of living things." As Kenneth R. Miller, a cell biologist at Brown University, has said , a theory "doesn’t mean a hunch or a guess. A theory is a system of explanations that ties together a whole bunch of facts. It not only explains those facts, but predicts what you ought to find from other observations and experiments.”

While theories are never completely infallible, they form the basis of scientific reasoning because, as Miller said "to the best of our ability, we’ve tested them, and they’ve held up."

More Differences Explained

  • Epidemic vs. Pandemic
  • Diagnosis vs. Prognosis
  • Treatment vs. Cure

Word of the Day

See Definitions and Examples »

Get Word of the Day daily email!

Games & Quizzes

Play Quordle: Guess all four words in a limited number of tries.  Each of your guesses must be a real 5-letter word.

Commonly Confused

'canceled' or 'cancelled', is it 'home in' or 'hone in', the difference between 'race' and 'ethnicity', homophones, homographs, and homonyms, on 'biweekly' and 'bimonthly', grammar & usage, more words you always have to look up, the difference between 'i.e.' and 'e.g.', more commonly misspelled words, plural and possessive names: a guide, commonly misspelled words, pilfer: how to play and win, 8 words with fascinating histories, flower etymologies for your spring garden, 8 words for lesser-known musical instruments, it's a scorcher words for the summer heat.

7ESL

Hypothesis vs. Theory: Understanding the Differences

“Hypothesis” and “theory” are two terms often used in science, but they have different meanings. Understanding the distinction between these two words can help us make sense of scientific explanations. In this article, we will explore the differences between “hypothesis” and “theory” in a way that is easy to understand. By the end, you’ll have a clearer grasp of these concepts and be able to use them confidently in scientific discussions.

The Main Difference Between Hypothesis and Theory

Hypothesis vs. Theory: Understanding the Differences

Hypothesis vs. Theory: Key Takeaways

  • A  hypothesis  is a preliminary assumption to be tested.
  • A  theory  is a well-supported explanation for a broad range of phenomena.

Hypothesis vs. Theory: The Definition

What does hypothesis mean.

A hypothesis is a proposed explanation for a phenomenon or a scientific question that can be tested through experimentation or observation. It is an essential part of the scientific method, which involves formulating a hypothesis, conducting experiments to test it, and analyzing the results to draw conclusions.

In scientific research, a hypothesis serves as a tentative solution to a problem or a preliminary explanation for an observed phenomenon. It is based on existing knowledge and is formulated to be tested and potentially refuted through empirical evidence. A well-constructed hypothesis is specific, testable, and falsifiable, meaning that it can be proven false through experimentation or observation.

Hypotheses play a crucial role in guiding scientific inquiry and the development of theories. They provide a framework for designing experiments, collecting data, and drawing conclusions, ultimately advancing our understanding of the natural world.

In everyday language, the term “hypothesis” is often used more broadly to refer to any proposed explanation or educated guess about a situation or phenomenon, although in the scientific context, a hypothesis specifically refers to a testable statement that can be supported or refuted through empirical evidence.

  • Example of a hypothesis : “If a person consumes more vitamin C, then their immune system will be stronger and they will have a lower likelihood of catching a cold.”

What Does Theory Mean?

A theory is a well-substantiated explanation of some aspect of the natural world that is based on a body of evidence, observations, and experimentation. In the scientific context, a theory is more than just a guess or a hypothesis; it is a comprehensive framework that has been rigorously tested and supported by a substantial amount of empirical data.

Scientific theories are developed through the scientific method, which involves formulating hypotheses, conducting experiments, and analyzing the results. As evidence accumulates and supports a particular explanation, it may be elevated to the status of a theory. Importantly, scientific theories are not static or unchangeable; they are subject to modification or even rejection in light of new evidence or more comprehensive explanations.

The term “theory” in science does not imply uncertainty or lack of evidence; rather, it represents a well-established and widely accepted explanation that has withstood rigorous scrutiny. Examples of scientific theories include the theory of evolution, the theory of relativity, and the germ theory of disease.

In everyday language, the term “theory” is often used more loosely to describe a conjecture or speculation. However, in the scientific context, a theory represents a robust and well-supported explanation of natural phenomena that has been tested and validated through empirical evidence.

  • Example of a theory: The theory of evolution, which explains how species change over time through the process of natural selection.

Hypothesis vs. Theory: Usage

You employ  hypotheses  during the early stages of research to develop experiments. For instance, you might hypothesize that a plant given more sunlight will grow faster.

A  theory , like the Theory of Evolution, summarizes a group of tested hypotheses and facts to explain a complex set of patterns and behaviors.

For a better understanding of the differences between the two terms, let’s take a look at the table below:

Feature Hypothesis Theory
Definition A proposed explanation for a phenomenon Well-substantiated explanation of some aspect
Basis Based on limited evidence and observations Based on extensive research and evidence
Testability Can be tested through experiments and research Has been extensively tested and supported
Scope Narrow in scope, specific to a particular phenomenon Broader in scope, applicable to multiple phenomena
Status Preliminary and subject to change Established and widely accepted in the scientific community

Tips to Remember the Differences

  • Think of a  hypothesis  as a  “hunch”  to be tested.
  • View a  theory  as a  “tapestry”  of well-tested ideas.
  • Use the phrase  “hypothesis for testing”  and  “theory for explaining”  to keep them distinct in your mind.

Hypothesis vs. Theory: Examples

Example sentences using hypothesis.

  • She formulated a  hypothesis  to explain the observed pattern in the data.
  • The researchers tested their  hypothesis  through a series of carefully controlled experiments.
  • The  hypothesis  proposed by the scientist led to a new understanding of the chemical reaction.
  • It is essential to develop a clear and testable  hypothesis  before conducting the research.
  • The  hypothesis  was supported by the experimental results, providing valuable insights into the phenomenon.

Example Sentences Using Theory

  • Einstein ‘s  theory of relativity has fundamentally altered our understanding of space and time.
  • Darwin’s theory of natural selection provides a framework for understanding the evolution of species.
  • The germ theory of disease is fundamental in developing medical hygiene practices.
  • The  Big Bang theory is widely accepted as the leading explanation for the origin of the universe.
  • The  kinetic molecular theory  explains the behavior of gases, including their volume and temperature relationships.

Related Confused Words

Hypothesis vs thesis.

A hypothesis is a specific, testable prediction that is proposed before conducting a research study, while a thesis is a statement or theory put forward to be maintained or proved. In essence, a hypothesis is a tentative assumption made in order to draw out and test its logical or empirical consequences, while a thesis is a proposition that is maintained by argument.

Both play distinct roles in the scientific and academic realms, with hypotheses guiding research and theses forming the central point of an argument or discussion.

Theory vs. Law

The primary difference between a scientific theory and a scientific law lies in their scope and function. A scientific theory is a well-substantiated explanation of some aspect of the natural world that is based on a body of evidence and has undergone rigorous testing and validation. In contrast, a scientific law describes a concise statement or mathematical equation that summarizes a wide variety of observations and experiments, often expressing a fundamental principle of nature.

While a theory provides an overarching framework for understanding a phenomenon, a law describes a specific, observable relationship. Both theory and law are vital components of scientific understanding, with theories offering explanations and laws providing concise descriptions of natural phenomena.

  • Ethics vs. Morals
  • Implicit vs. Explicit
  • Epidemic vs. Pandemic
  • Latest Posts

' src=

  • Skillset or Skill Set: Clarifying the Difference - March 9, 2024
  • Vender or Vendor: What Is the Difference? - February 5, 2024
  • Tick vs. Bed Bug: Identifying The Main Difference - February 3, 2024

IMAGES

  1. PPT

    hypothesis theory vs law

  2. Theory vs. Hypothesis vs. Law

    hypothesis theory vs law

  3. Hypothesis Vs Theory

    hypothesis theory vs law

  4. Law vs Theory Diagram

    hypothesis theory vs law

  5. Hypothesis Theory Law Worksheet

    hypothesis theory vs law

  6. PPT

    hypothesis theory vs law

COMMENTS

  1. What's the Difference Between a Fact, a Hypothesis, a Theory, and a Law

    The words "fact," "hypothesis," "theory," and "law" have very specific meanings in the world of science, and they don't exactly match the ones we use in everyday language. 1130913708. professor writing on the board while having a chalk and blackboard lecture (shallow DOF; color toned image)

  2. Scientific Hypothesis, Theory, Law Definitions

    A scientific theory summarizes a hypothesis or group of hypotheses that have been supported with repeated testing. A theory is valid as long as there is no evidence to dispute it. Therefore, theories can be disproven. Basically, if evidence accumulates to support a hypothesis, then the hypothesis can become accepted as a good explanation of a ...

  3. Theory vs. Hypothesis vs. Law

    A hypothesis is a possible explanation that can be tested. This simple definition needs some further explanation. It says it must have a possible explanation. The hypothesis should apply reasoning ...

  4. Theory vs. Law: Basics of the Scientific Method

    Theory vs. Law: Basics of the Scientific Method. The scientific method involves formulating hypotheses and testing them to see if they hold up to the realities of the natural world. Successfully proven hypotheses can lead to either scientific theories or scientific laws, which are similar in character but are not synonymous terms.

  5. Hypothesis, Model, Theory, and Law

    A scientific theory or law represents a hypothesis (or group of related hypotheses) which has been confirmed through repeated testing, almost always conducted over a span of many years. Generally, a theory is an explanation for a set of related phenomena, like the theory of evolution or the big bang theory . The word "law" is often invoked in ...

  6. PDF Understanding Hypotheses, Predictions, Laws, and Theories

    Definitions. A (causal) hypothesis is a proposed explanation. A prediction is the expected result of a test that is derived, by deduction, from a hypothesis or theory. A law (or rule or principle) is a statement that summarises an observed regularity or pattern in nature.

  7. Scientific Law Definition and Examples

    A hypothesis, theory, and law are all parts of scientific inquiry, but one never becomes another. They are different things. A hypothesis never becomes a theory, no matter how many experiments support it, because a hypothesis is simply a prediction about how one variable responds when another is changed. A theory takes into account the results ...

  8. Theories, Hypotheses, and Laws

    A scientific hypothesis is an inferred explanation of an observation or research finding; while more exploratory in nature than a theory, it is based on existing scientific knowledge. A scientific law is an expression of a mathematical or descriptive relationship observed in nature.

  9. Theory vs. Hypothesis: Basics of the Scientific Method

    Theory vs. Hypothesis: Basics of the Scientific Method. Written by MasterClass. Last updated: Jun 7, 2021 • 2 min read. Though you may hear the terms "theory" and "hypothesis" used interchangeably, these two scientific terms have drastically different meanings in the world of science.

  10. Hypotheses, Theories, Laws (and Models)… What's the difference?

    2. They make specific predictions that are empirically testable, in principle. 3. They are falsifiable - if their predictions are false, they are false - though not provable, by experiment or observation. 4. As a consequence of point 3., hypotheses, theories, and laws are all provisional; they may be replaced as further information becomes ...

  11. Facts, Hypotheses, Theories, and Laws: What's the Difference?

    In summary, a fact is a tested and confirmed observation or measurement. A hypothesis is basically an educated guess, and the terms theory and law synonymously describe a thoroughly tested explanatory framework which has a high predictive power and explains facts.

  12. The Difference Between a Scientific Hypothesis, Theory, and Law

    Hypothesis: the core of the scientific method. The scientific method is an empirical procedure that consists of systematic observation, measurement, and experiment, and the formulation, testing ...

  13. The Difference Between a Fact, Hypothesis, Theory, and Law In Science

    Fact: Observations about the world around us. Example: "It's bright outside.". Hypothesis: A proposed explanation for a phenomenon made as a starting point for further investigation. Example ...

  14. Video: Theory vs. Hypothesis vs. Law

    A hypothesis is a possible explanation for the observations made. An experiment is a procedure carefully done to examine the validity of a hypothesis. A scientific law is a statement that ...

  15. Theory vs. Hypothesis vs. Law… Explained!

    Yes, they are both theories. Stop saying it like it's a bad thing! It's time to learn the difference between a fact, a theory, a hypothesis, and a scientific law. Special thanks to Joe Hanson, Ph.D., for allowing us to publish his terrific videos. It's Okay To Be Smart is written and hosted by Joe Hanson, Ph.D. @jtotheizzoe.

  16. Scientific Law vs. Theory: How Are They Different?

    Though closely related, scientific law vs. theory are two different terms. Learn about their key differences in science with this helpful article. Though closely related, scientific law vs. theory are two different terms. ... As with laws, every theory begins with a scientific hypothesis, which must be carefully researched. If there is ...

  17. Scientific Hypothesis vs Theory vs Law

    A scientific theory consists of one or more hypotheses that have been supported by repeated testing. Theories are one of the pinnacles of science and are widely accepted in the scientific ...

  18. Fact vs. Theory vs. Hypothesis vs. Law… EXPLAINED!

    Viewers like you help make PBS (Thank you 😃) . Support your local PBS Member Station here: https://to.pbs.org/PBSDSDonateThink you know the difference?Don't...

  19. Hypothesis vs. Theory: The Difference Explained

    A hypothesis is an assumption made before any research has been done. It is formed so that it can be tested to see if it might be true. A theory is a principle formed to explain the things already shown in data. Because of the rigors of experiment and control, it is much more likely that a theory will be true than a hypothesis.

  20. Hypothesis vs. Theory: Understanding the Differences • 7ESL

    Hypothesis vs Thesis. A hypothesis is a specific, testable prediction that is proposed before conducting a research study, while a thesis is a statement or theory put forward to be maintained or proved. In essence, a hypothesis is a tentative assumption made in order to draw out and test its logical or empirical consequences, while a thesis is ...

  21. Primary Difference Between Hypothesis and Theory

    Hypothesis & theory have one main difference. Use these definitions & examples to explore how these terms differ from each other and similar science terms. ... Hypothesis vs. Theory vs. Law. A law is "a sequence of events that has been observed to occur with unvarying uniformity under the same conditions." Any scientific principle that has ...