• - Google Chrome

Intended for healthcare professionals

  • My email alerts
  • BMA member login
  • Username * Password * Forgot your log in details? Need to activate BMA Member Log In Log in via OpenAthens Log in via your institution

Home

Search form

  • Advanced search
  • Search responses
  • Search blogs
  • New advances in type 1...

New advances in type 1 diabetes

  • Related content
  • Peer review

This article has a correction. Please see:

  • New advances in type 1 diabetes - June 03, 2024
  • Savitha Subramanian , professor of medicine ,
  • Farah Khan , clinical associate professor of medicine ,
  • Irl B Hirsch , professor of medicine
  • University of Washington Diabetes Institute, Division of Metabolism, Endocrinology and Nutrition, University of Washington, Seattle, WA, USA
  • Correspondence to: I B Hirsch ihirsch{at}uw.edu

Type 1 diabetes is an autoimmune condition resulting in insulin deficiency and eventual loss of pancreatic β cell function requiring lifelong insulin therapy. Since the discovery of insulin more than 100 years ago, vast advances in treatments have improved care for many people with type 1 diabetes. Ongoing research on the genetics and immunology of type 1 diabetes and on interventions to modify disease course and preserve β cell function have expanded our broad understanding of this condition. Biomarkers of type 1 diabetes are detectable months to years before development of overt disease, and three stages of diabetes are now recognized. The advent of continuous glucose monitoring and the newer automated insulin delivery systems have changed the landscape of type 1 diabetes management and are associated with improved glycated hemoglobin and decreased hypoglycemia. Adjunctive therapies such as sodium glucose cotransporter-1 inhibitors and glucagon-like peptide 1 receptor agonists may find use in management in the future. Despite these rapid advances in the field, people living in under-resourced parts of the world struggle to obtain necessities such as insulin, syringes, and blood glucose monitoring essential for managing this condition. This review covers recent developments in diagnosis and treatment and future directions in the broad field of type 1 diabetes.

Introduction

Type 1 diabetes is an autoimmune condition that occurs as a result of destruction of the insulin producing β cells of the pancreatic islets, usually leading to severe endogenous insulin deficiency. 1 Without treatment, diabetic ketoacidosis will develop and eventually death will follow; thus, lifelong insulin therapy is needed for survival. Type 1 diabetes represents 5-10% of all diabetes, and diagnosis classically occurs in children but can also occur in adulthood. The burden of type 1 diabetes is expansive; it can result in long term complications, decreased life expectancy, and reduced quality of life and can add significant financial burden. Despite vast improvements in insulin, insulin delivery, and glucose monitoring technology, a large proportion of people with type 1 diabetes do not achieve glycemic goals. The massive burden of type 1 diabetes for patients and their families needs to be appreciated. The calculation and timing of prandial insulin dosing, often from food with unknown carbohydrate content, appropriate food and insulin dosing when exercising, and cost of therapy are all major challenges. The psychological realities of both acute management and the prospect of chronic complications add to the burden. Education programs and consistent surveillance for “diabetes burnout” are ideally available to everyone with type 1 diabetes.

In this review, we discuss recent developments in the rapidly changing landscape of type 1 diabetes and highlight aspects of current epidemiology and advances in diagnosis, technology, and management. We do not cover the breadth of complications of diabetes or certain unique scenarios including psychosocial aspects of type 1 diabetes management, management aspects specific to older adults, and β cell replacement therapies. Our review is intended for the clinical reader, including general internists, family practitioners, and endocrinologists, but we acknowledge the critical role that people living with type 1 diabetes and their families play in the ongoing efforts to understand this lifelong condition.

Sources and selection criteria

We did individual searches for studies on PubMed by using terms relevant to the specific topics covered in this review pertaining to type 1 diabetes. Search terms used included “type 1 diabetes” and each individual topic—diagnosis, autoantibodies, adjuvant therapies, continuous glucose monitoring, automated insulin delivery, immunotherapies, diabetic ketoacidosis, hypoglycemia, and under-resourced settings. We considered all studies published in the English language between 1 January 2001 and 31 January 2023. We selected publications outside of this timeline on the basis of relevance to each topic. We also supplemented our search strategy by a hand search of the references of key articles. We prioritized studies on each highlighted topic according to the level of evidence (randomized controlled trials (RCTs), systematic reviews and meta-analyses, consensus statements, and high quality observational studies), study size (we prioritized studies with at least 50 participants when available), and time of publication (we prioritized studies published since 2003 except for the landmark Diabetes Control and Complications Trial and a historical paper by Tuomi on diabetes autoantibodies, both from 1993). For topics on which evidence from RCTs was unavailable, we included other study types of the highest level of evidence available. To cover all important clinical aspects of the broad array of topics covered in this review, we included additional publications such as clinical reviews as appropriate on the basis of clinical relevance to both patients and clinicians in our opinion.

Epidemiology

The incidence of type 1 diabetes is rising worldwide, possibly owing to epigenetic and environmental factors. Globally in 2020 an estimated 8.7 million people were living with type 1 diabetes, of whom approximately 1.5 million were under 20 years of age. 2 This number is expected to rise to more than 17 million by 2040 ( https://www.t1dindex.org/#global ). The International Diabetes Federation estimates the global prevalence of type 1 diabetes at 0.1%, and this is likely an underestimation as diagnoses of type 1 diabetes in adults are often not accounted for. The incidence of adult onset type 1 diabetes is higher in Europe, especially in Nordic countries, and lowest in Asian countries. 3 Adult onset type 1 diabetes is also more prevalent in men than in women. An increase in prevalence in people under 20 years of age has been observed in several western cohorts including the US, 4 5 Netherlands, 6 Canada, 7 Hungary, 8 and Germany. 9

Classically, type 1 diabetes presents over the course of days or weeks in children and adolescents with polyuria, polydipsia, and weight loss due to glycosuria. The diagnosis is usually straightforward, with profound hyperglycemia (often >300 mg/dL) usually with ketonuria with or without ketoacidemia. Usually, more than one autoantibody is present at diagnosis ( table 1 ). 10 The number of islet autoantibodies combined with parameters of glucose tolerance now forms the basis of risk prediction for type 1 diabetes, with stage 3 being clinical disease ( fig 1 ). 11 The originally discovered autoantibody, islet cell antibody, is no longer used clinically owing to variability of the assay despite standardisation. 12

Autoantibody characteristics associated with increased risk of type 1 diabetes 10

  • View inline

Fig 1

Natural history of type 1 diabetes. Adapted with permission from Insel RA, et al. Diabetes Care 2015;38:1964-74 11

  • Download figure
  • Open in new tab
  • Download powerpoint

Half of all new cases of type 1 diabetes are now recognized as occurring in adults. 13 Misclassification due to misdiagnosis (commonly as type 2 diabetes) occurs in nearly 40% of people. 14 As opposed to typical childhood onset type 1 diabetes, progression to severe insulin deficiency, and therefore its clinical presentation in adults, is variable. The term latent autoimmune diabetes of adults (LADA) was introduced 30 years ago to identify adults who developed immune mediated diabetes. 15 An international consensus defined the diagnostic criteria for LADA as age >30 years, lack of need for insulin use for at least six months, and presence of islet cell autoantibodies. 16 However, debate as to whether the term LADA should even be used as a diagnostic term persists. The American Diabetes Association (ADA) Standards of Care note that for the purpose of classification, all forms of diabetes mediated by autoimmune β cell destruction are included in the classification of type 1 diabetes. 17 Nevertheless, they note that use of the term LADA is acceptable owing to the practical effect of heightening awareness of adults likely to have progressive autoimmune β cell destruction and thereby accelerating insulin initiation by clinicians to prevent diabetic ketoacidosis.

The investigation of adults with suspected type 1 diabetes is not always straightforward ( fig 2 ). 18 Islet cell autoantibodies such as glutamic acid decarboxylase antibody (GADA), tyrosine phosphatase IA2 antibody, and zinc transporter isoform 8 autoantibody act as markers of immune activity and can be detected in the blood with standardized assays ( table 1 ). The presence of one or more antibodies in adults with diabetes could mark the progression to severe insulin deficiency; these individuals should be considered to have type 1 diabetes. 1 Autoantibodies, especially GADA, should be measured only in people with clinically suspected type 1 diabetes, as low concentrations of GADA can be seen in type 2 diabetes and thus false positive measurements are a concern. 19 That 5-10% of cases of type 1 diabetes may occur without diabetes autoantibodies is also now clear, 20 and that the diabetes autoantibodies disappear over time is also well appreciated. 21

Fig 2

Flowchart for investigation of suspected type 1 diabetes in adults, based on data from white European populations. No single clinical feature in isolation confirms type 1 diabetes. The most discriminative feature is younger age at diagnosis (<35 years), with lower body mass index (<25), unintentional weight loss, ketoacidosis, and glucose >360 mg/dL at presentation. Adapted with permission from Holt RIG, et al. Diabetes Care 2021;44:2589-625 1

Genetic risk scoring (GRS) for type 1 diabetes has received attention to differentiate people whose classification is unclear. 22 23 24 Developed in 2019, the T1D-GRS2 uses 67 single nucleotide polymorphisms from known autoimmune loci and can predict type 1 diabetes in children of European and African ancestry. Although GRS is not available for routine clinical use, it may allow prediction of future cases of type 1 diabetes to allow prevention strategies with immune intervention (see below).

A major change in the type 1 diabetes phenotype has occurred over the past few decades, with an increase in obesity; the reasons for this are complex. In the general population, including people with type 1 diabetes, an epidemic of sedentary lifestyles and the “westernized diet” consisting of increased processed foods, refined sugars, and saturated fat is occurring. In people with type 1 diabetes, the overall improvement in glycemic control since the report of the Diabetes Control and Complications Trial (DCCT) in 1993 (when one or two insulin injections a day was standard therapy) has resulted in less glycosuria so that the typical patient with lower body weight is uncommon in high income countries. In the US T1D Exchange, more than two thirds of the adult population were overweight or obese. 25

Similarly, obesity in young people with type 1 diabetes has also increased over the decades. 26 The combination of autoimmune insulin deficiency with obesity and insulin resistance has received several descriptive names over the years, with this phenotype being described as double diabetes and hybrid diabetes, among others, 26 27 but no formal nomenclature in the diabetes classification exists. Many of these patients have family members with type 2 diabetes, and some patients probably do have both types of diabetes. Clinically, minimal research has been done into how this specific population responds to certain antihyperglycemic oral agents, such as glucagon-like peptide 1 (GLP-1) receptor agonists, given the glycemic, weight loss, and cardiovascular benefits seen with these agents. 28 These patients are common in most adult diabetes practices, and weight management in the presence of insulin resistance and insulin deficiency remains unclear.

Advances in monitoring

The introduction of home blood glucose monitoring (BGM) more than 45 years ago was met with much skepticism until the report of the DCCT. 29 Since then, home BGM has improved in accuracy, precision, and ease of use. 30 Today, in many parts of the world, home BGM, a static measurement of blood glucose, has been replaced by continuous glucose monitoring (CGM), a dynamic view of glycemia. CGM is superior to home BGM for glycemic control, as confirmed in a meta-analysis of 21 studies and 2149 participants with type 1 diabetes in which CGM use significantly decreased glycated hemoglobin (HbA 1c ) concentrations compared with BGM (mean difference −0.23%, 95% confidence interval −3.83 to −1.08; P<0.001), with a greater benefit if baseline HbA 1c was >8% (mean difference −0.43%, −6.04 to −3.30; P<0.001). 31 This newer technology has also evolved into a critical component of automated insulin delivery. 32

CGM is the standard for glucose monitoring for most adults with type 1 diabetes. 1 This technology uses interstitial fluid glucose concentrations to estimate blood glucose. Two types of CGM are available. The first type, called “real time CGM”, provides a continuous stream of glucose data to a receiver, mobile application, smartwatch, or pump. The second type, “intermittently scanned CGM,” needs to be scanned by a reader device or smartphone. Both of these technologies have shown improvements in HbA 1c and amount of time spent in the hypoglycemic range compared with home BGM when used in conjunction with multiple daily injections or “open loop” insulin pump therapy. 33 34 Real time CGM has also been shown to reduce hypoglycemic burden in older adults with type 1 diabetes ( table 2 ). 36 Alerts that predict or alarm with both hypoglycemia and hyperglycemia can be customized for the patient’s situation (for example, a person with unawareness of hypoglycemia would have an alert at a higher glucose concentration). Family members can also remotely monitor glycemia and be alerted when appropriate. The accuracy of these devices has improved since their introduction in 2006, so that currently available sensors can be used without a confirmation glucose concentration to make a treatment decision with insulin. However, some situations require home BGM, especially when concerns exist that the CGM does not match symptoms of hypoglycemia.

Summary of trials for each topic covered

Analysis of CGM reports retrospectively can assist therapeutic decision making both for the provider and the patient. Importantly, assessing the retrospective reports and watching the CGM in real time together offer insight to the patient with regard to insulin dosing, food choices, and exercise. Patients should be encouraged to assess their data on a regular basis to better understand their diabetes self-management. Table 3 shows standard metrics and targets for CGM data. 52 Figure 3 shows an ambulatory glucose profile.

Standardized continuous glucose monitoring metrics for adults with diabetes 52

Fig 3

Example of ambulatory glucose profile of 52 year old woman with type 1 diabetes and fear of hypoglycemia. CGM=continuous glucose monitoring; GMI=glucose management indicator

Improvements in technology and evidence for CGM resulting in international recommendations for its widespread use have resulted in greater uptake by people with type 1 diabetes across the globe where available and accessible. Despite this, not everyone wishes to use it; some people find wearing any device too intrusive, and for many the cost is prohibitive. These people need at the very least before meal and bedtime home BGM.

A next generation implantable CGM device (Sensionics), with an improved calibration algorithm that lasts 180 days after insertion by a healthcare professional, is available in both the EU and US. Although fingerstick glucose calibration is needed, the accuracy is comparable to that of other available devices. 53

Advances in treatments

The discovery of insulin in 1921, resulting in a Nobel Prize, was considered one of the greatest scientific achievements of the 20th century. The development of purified animal insulins in the late 1970s, followed by human insulin in the early 1980s, resulted in dramatic reductions in allergic reactions and lipoatrophy. Introduction of the first generation of insulin analogs, insulin lispro in the mid-1990s followed by insulin glargine in the early 2000s, was an important advance for the treatment of type 1 diabetes. 54 We review the next generation of insulin analogs here. Table 4 provides details on available insulins.

Pharmacokinetics of commonly used insulin preparations

Ultra-long acting basal insulins

Insulin degludec was developed with the intention of improving the duration of action and achieving a flatter profile compared with the original long acting insulin analogs, insulin glargine and insulin detemir. Its duration of action of 42 hours at steady state means that the profile is generally flat without significant day-to-day variability, resulting in less hypoglycemia compared with U-100 glargine. 39 55

When U-100 insulin glargine is concentrated threefold, its action is prolonged. 56 U-300 glargine has a different kinetic profile and is delivered in one third of the volume of U-100 glargine, with longer and flatter effects. The smaller volume of U-300 glargine results in slower and more gradual release of insulin monomers owing to reduced surface area in the subcutaneous space. 57 U-300 glargine also results in lesser hypoglycemia compared with U-100 glargine. 58

Ultra-rapid acting prandial insulins

Rapid acting insulin analogs include insulin lispro, aspart, and glulisine. With availability of insulin lispro, the hope was for a prandial insulin that better matched food absorption. However, these newer insulins are too slow to control the glucose spike seen with ingestion of a high carbohydrate load, leading to the development of insulins with even faster onset of action.

The first available ultra-rapid prandial insulin was fast acting insulin aspart. This insulin has an onset of appearance approximately twice as fast (~5 min earlier) as insulin aspart, whereas dose-concentration and dose-response relations are comparable between the two insulins ( table 4 ). 59 In adults with type 1 diabetes, mealtime and post-meal fast acting aspart led to non-inferior glycemic control compared with mealtime aspart, in combination with basal insulin. 60 Mean HbA 1c was 7.3%, 7.3%, and 7.4% in the mealtime faster aspart, mealtime aspart, and post‐meal faster aspart arms, respectively (P<0.001 for non-inferiority).

Insulin lispro-aabc is the second ultra-rapid prandial insulin. In early kinetic studies, insulin lispro-aabc appeared in the serum five minutes faster with 6.4-fold greater exposure in the first 15 minutes compared with insulin lispro. 61 The duration of exposure of the insulin concentrations in this study was 51 minutes faster with lispro-aabc. Overall insulin exposure was similar between the two groups. Clinically, lispro-aabc is non-inferior to insulin lispro, but postprandial hyperglycemia is lower with the faster acting analog. 62 Lispro-aabc given at mealtime resulted in greater improvement in post-prandial glucose (two hour post-prandial glucose −31.1 mg/dL, 95% confidence interval −41.0 to −21.2; P<0.001).

Both ultra-rapid acting insulins can be used in insulin pumps. Lispro-aabc tends to have more insertion site reactions than insulin lispro. 63 A meta-analysis including nine studies and 1156 participants reported increased infusion set changes on rapid acting insulin analogs (odds ratio 1.60, 95% confidence interval 1.26 to 2.03). 64

Pulmonary inhaled insulin

The quickest acting insulin is pulmonary inhaled insulin, with an onset of action of 12 minutes and a duration of 1.5-3 hours. 65 When used with postprandial supplemental dosing, glucose control is improved without an increase in hypoglycemia. 66

Insulin delivery systems

Approved automated insulin delivery systems.

CGM systems and insulin pumps have shown improvement in glycemic control and decreased risk of severe hypoglycemia compared with use of self-monitoring of blood glucose and multiple daily insulin injections in type 1 diabetes. 67 68 69 Using CGM and insulin pump together (referred to as sensor augmented pump therapy) only modestly improves HbA 1c in patients who have high sensor wear time, 70 71 but the management burden of diabetes does not decrease as frequent user input is necessary. Thus emerged the concept of glucose responsive automated insulin delivery (AID), in which data from CGM can inform and allow adjustment of insulin delivery.

In the past decade, exponential improvements in CGM technologies and refined insulin dosing pump algorithms have led to the development of AID systems that allow for minimization of insulin delivery burden. The early AID systems reduced hypoglycemia risk by automatically suspending insulin delivery when glucose concentrations dropped to below a pre-specified threshold but did not account for high glucose concentrations. More complex algorithms adjusting insulin delivery up and down automatically in response to real time sensor glucose concentrations now allow close replication of normal endocrine pancreatic physiology.

AID systems (also called closed loop or artificial pancreas systems) include three components—an insulin pump that continuously delivers rapid acting insulin, a continuous glucose sensor that measures interstitial fluid glucose at frequent intervals, and a control algorithm that continuously adjusts insulin delivery that resides in the insulin pump or a smartphone application or handheld device ( fig 4 ). All AID systems that are available today are referred to as “hybrid” closed loop (HCL) systems, as users are required to manually enter prandial insulin boluses and signal exercise, but insulin delivery is automated at night time and between meals. AID systems, regardless of the type used, have shown benefit in glycemic control and cost effectiveness, improve quality of life by improving sleep quality, and decrease anxiety and diabetes burden in adults and children. 72 73 74 Limitations to today’s HCL systems are primarily related to pharmacokinetics and pharmacodynamics of available analog insulins and accuracy of CGM in extremes of blood glucose values. The iLet bionic pancreas, cleared by the US Food and Drug Administration (FDA) in May 2023, is an AID system that determines all therapeutic insulin doses for an individual on the basis of body weight, eliminating the need for calculation of basal rates, insulin to carbohydrate ratios, blood glucose corrections, and bolus dose. The control algorithms adapt continuously and autonomously to the individual’s insulin needs. 38 Table 5 lists available AID systems.

Fig 4

Schematic of closed loop insulin pump technology. The continuous glucose monitor senses interstitial glucose concentrations and sends the information via Bluetooth to a control algorithm hosted on an insulin pump (or smartphone). The algorithm calculates the amount of insulin required, and the insulin pump delivers rapid acting insulin subcutaneously

Comparison of commercially available hybrid closed loop systems 75

Unapproved systems

Do-it-yourself (DIY) closed loop systems—DIY open artificial pancreas systems—have been developed by people with type 1 diabetes with the goal of self-adjusting insulin by modifying their individually owned devices. 76 These systems are built by the individual using an open source code widely available to anyone with compatible medical devices who is willing and able to build their own system. DIY systems are used by several thousand people across the globe but are not approved by regulatory bodies; they are patient-driven and considered “off-label” use of technology with the patient assuming full responsibility for their use. Clinicians caring for these patients should ensure basic diabetes skills, including pump site maintenance, a knowledge of how the chosen system works, and knowing when to switch to “manual mode” for patients using an artificial pancreas system of any kind. 76 The small body of studies on DIY looping suggests improvement in HbA 1c , increased time in range, decreased hypoglycemia and glucose variability, improvement in night time blood glucose concentrations, and reduced mental burden of diabetes management. 77 78 79 Although actively prescribing or initiating these options is not recommended, these patients should be supported by clinical teams; insulin prescription should not be withheld, and, if initiated by the patient, unregulated DIY options should be openly discussed to ensure open and transparent relationships. 78

In January 2023, the US FDA cleared the Tidepool Loop app, a DIY AID system. This software will connect the CGM, insulin pump, and Loop algorithm, but no RCTs using this method are available.

β cell replacement therapies

For patients with type 1 diabetes who meet specific clinical criteria, β cell replacement therapy using whole pancreas or pancreatic islet transplantation can be considered. Benefits of transplantation include immediate cessation of insulin therapy, attainment of euglycemia, and avoidance of hypoglycemia. Additional benefits include improved quality of life and stabilization of complications. 80 Chronic immunosuppression is needed to prevent graft rejection after transplantation.

Pancreas transplantation

Whole pancreas transplantation, first performed in 1966, involves complex abdominal surgery and lifelong immunosuppressive therapy and is limited by organ donor availability. Today, pancreas transplants are usually performed simultaneously using two organs from the same donor (simultaneous pancreas-kidney transplant (SPKT)), sequentially if the candidate has a living donor for renal transplantation (pancreas after kidney transplant (PAKT)) or on its own (pancreas transplantation alone). Most whole pancreas transplants are performed with kidney transplantation for end stage diabetic kidney disease. Pancreas graft survival at five years after SPKT is 80% and is superior to that with pancreas transplants alone (62%) or PAKT (67%). 81 Studies from large centers where SPKT is performed show that recipients can expect metabolic improvements including amelioration of problematic hypoglycemia for at least five years. 81 The number of pancreas transplantations has steadily decreased in the past two decades.

Islet transplantation

Islet transplantation can be pursued in selected patients with type 1 diabetes marked by unawareness of hypoglycemia and severe hypoglycemic episodes, to help restore the α cell response critical for responding to hypoglycemia. 82 83 Islet transplantation involves donor pancreas procurement with subsequent steps to isolate, purify, culture, and infuse the islets. Multiple donors are needed to provide enough islet cells to overcome islet cell loss during transplantation. Survival of the islet grafts, limited donor supply, and lifelong need for immunosuppressant therapy remain some of the biggest challenges. 84 Islet transplantation remains experimental in the US and is offered in a few specialized centers in North America, some parts of Europe, and Australia. 85

Disease modifying treatments for β cell preservation

Therapies targeting T cells, B cells, and cytokines that find use in a variety of autoimmune diseases have also been applied to type 1 diabetes. The overarching goal of immune therapies in type 1 diabetes is to prevent or delay the loss of functional β cell mass. Studies thus far in early type 1 diabetes have not yet successfully shown reversal of loss of C peptide or maintenance of concentrations after diagnosis, although some have shown preservation or slowing of loss of β cells. This suggests that a critical time window of opportunity exists for starting treatment depending on the stage of type 1 diabetes ( fig 1 ).

Teplizumab is a humanized monoclonal antibody against the CD3 molecule on T cells; it is thought to modify CD8 positive T lymphocytes, key effector cells that mediate β cell death and preserves regulatory T cells. 86 Teplizumab, when administered to patients with new onset of type 1 diabetes, was unable to restore glycemia despite C peptide preservation. 87 However, in its phase II prevention study of early intervention in susceptible individuals (at least two positive autoantibodies and an abnormal oral glucose tolerance test at trial entry), a single course of teplizumab delayed progression to clinical type 1 diabetes by about two years ( table 2 ). 43 On the basis of these results, teplizumab received approval in the US for people at high risk of type 1 diabetes in November 2022. 88 A phase III trial (PROTECT; NCT03875729 ) to evaluate the efficacy and safety of teplizumab versus placebo in children and adolescents with new diagnosis of type 1 diabetes (within six weeks) is ongoing. 89

Thus far, targeting various components of the immune response has been attempted in early type 1 diabetes without any long term beneficial effects on C peptide preservation. Co-stimulation blockade using CTLA4-Ig abatacept, a fusion protein that interferes with co-stimulation needed in the early phases of T cell activation that occurs in type 1 diabetes, is being tested for efficacy in prevention of type 1 diabetes ( NCT01773707 ). 90 Similarly, several cytokine directed anti-inflammatory targets (interleukin 6 receptor, interleukin 1β, tumor necrosis factor ɑ) have not shown any benefit.

Non-immunomodulatory adjunctive therapies

Adjunctive therapies for type 1 diabetes have been long entertained owing to problems surrounding insulin delivery, adequacy of glycemic management, and side effects associated with insulin, especially weight gain and hypoglycemia. At least 50% of adults with type 1 diabetes are overweight or obese, presenting an unmet need for weight management in these people. Increased cardiovascular risk in these people despite good glycemic management presents additional challenges. Thus, use of adjuvant therapies may tackle these problems.

Metformin, by decreasing hepatic glucose production, could potentially decrease fasting glucose concentrations. 91 It has shown benefit in reducing insulin doses and possibly improving metabolic control in obese/overweight people with type 1 diabetes. A meta-analysis of 19 RCTs suggests short term improvement in HbA 1c that is not sustained after three months and is associated with higher incidence of gastrointestinal side effects. 92 No evidence shows that metformin decreases cardiovascular morbidity in type 1 diabetes. Therefore, owing to lack of conclusive benefit, addition of metformin to treatment regimens is not recommended in consensus guidelines.

Glucagon-like peptide receptor agonists

Endogenous GLP-1 is an incretin hormone secreted from intestinal L cells in response to nutrient ingestion and enhances glucose induced insulin secretion, suppresses glucagon secretion, delays gastric emptying, and induces satiety. 93 GLP-1 promotes β cell proliferation and inhibits apoptosis, leading to expansion of β cell mass. GLP-1 secretion in patients with type 1 diabetes is similar to that seen in people without diabetes. Early RCTs of liraglutide in type 1 diabetes resulted in weight loss and modest lowering of HbA 1c ( table 2 ). 49 50 Liraglutide 1.8 mg in people with type 1 diabetes and higher body mass index decreased HbA 1c , weight, and insulin requirements with no increased hypoglycemia risk. 94 However, on the basis of results from a study of weekly exenatide that showed similar results, these effects may not be sustained. 51 A meta-analysis of 24 studies including 3377 participants showed that the average HbA 1c decrease from GLP-1 receptor agonists compared with placebo was highest for liraglutide 1.8 mg daily (−0.28%, 95% confidence interval −0.38% to−0.19%) and exenatide (−0.17%, −0.28% to 0.02%). The estimated weight loss from GLP-1 receptor agonists compared with placebo was −4.89 (−5.33 to−4.45)  kg for liraglutide 1.8 mg and −4.06  (−5.33 to−2.79) kg for exenatide. 95 No increase in severe hypoglycemia was seen (odds ratio 0.67, 0.43 to 1.04) but therapy was associated with higher levels of nausea. GLP-1 receptor agonist use may be beneficial for weight loss and reducing insulin doses in a subset of patients with type 1 diabetes. GLP-1 receptor agonists are not a recommended treatment option in type 1 diabetes. Semaglutide is being studied in type 1 diabetes in two clinical trials ( NCT05819138 ; NCT05822609 ).

Sodium-glucose cotransporter inhibitors

Sodium-glucose cotransporter 2 (SGLT-2), a protein expressed in the proximal convoluted tubule of the kidney, reabsorbs filtered glucose; its inhibition prevents glucose reabsorption in the tubule and increases glucose excretion by the kidney. Notably, the action of these agents is independent of insulin, so this class of drugs has potential as adjunctive therapy for type 1 diabetes. Clinical trials have shown significant benefit in cardiovascular and renal outcomes in type 2 diabetes; therefore, significant interest exists for use in type 1 diabetes. Several available SGLT-2 inhibitors have been studied in type 1 diabetes and have shown promising results with evidence of decreased total daily insulin dosage, improvement in HbA 1c , lower rates of hypoglycemia, and decrease in body weight; however, these effects do not seem to be sustained at one year in clinical trials and seem to wane with time. Despite beneficial effects, increased incidence of diabetic ketoacidosis has been observed in all trials, is a major concern, and is persistent despite educational efforts. 96 97 98 Low dose empagliflozin (2.5 mg) has shown lower rates of diabetic ketoacidosis in clinical trials ( table 2 ). 47 Favorable risk profiles have been noted in Japan, the only market where SGLT-2 inhibitors are approved for adjunctive use in type 1 diabetes. 99 In the US, SGLT-2 inhibitors are approved for use in type 2 diabetes only. In Europe, although dapagliflozin was approved for use as adjunct therapy to insulin in adults with type 1 diabetes, the manufacturer voluntarily withdrew the indication for the drug in 2021. 100 Sotagliflozin is a dual SGLT-1 and SGLT-2 inhibitor that decreases renal glucose reabsorption through systemic inhibition of SGLT-2 and decreases glucose absorption in the proximal intestine by SGLT-1 inhibition, blunting and delaying postprandial hyperglycemia. 101 Studies of sotagliflozin in type 1 diabetes have shown sustained HbA 1c reduction, weight loss, lower insulin requirements, lesser hypoglycemia, and more diabetic ketoacidosis relative to placebo. 102 103 104 The drug received authorization in the EU for use in type 1 diabetes, but it is not marketed there. Although SGLT inhibitors are efficacious in type 1 diabetes management, the risk of diabetic ketoacidosis is a major limitation to widespread use of these agents.

Updates in acute complications of type 1 diabetes

Diabetic ketoacidosis.

Diabetic ketoacidosis is a serious and potentially fatal hyperglycemic emergency accompanied by significant rates of mortality and morbidity as well as high financial burden for healthcare systems and societies. In the past decade, increasing rates of diabetic ketoacidosis in adults have been observed in the US and Europe. 105 106 This may be related to changes in the definition of diabetic ketoacidosis, use of medications associated with higher risk, and admission of patients at lower risk. 107 In a US report of hospital admissions with diabetic ketoacidosis, 53% of those admitted were between the ages of 18 and 44, with higher rates in men than in women. 108 Overall, although mortality from diabetic ketoacidosis in developed countries remains low, rates have risen in people aged >60 and in those with coexisting life threatening illnesses. 109 110 Recurrent diabetic ketoacidosis is associated with a substantial mortality rate. 111 Frequency of diabetic ketoacidosis increases with higher HbA 1c concentrations and with lower socioeconomic status. 112 Common precipitating factors include newly diagnosed type 1 diabetes, infection, poor adherence to insulin, and an acute cardiovascular event. 109

Euglycemic diabetic ketoacidosis refers to the clinical picture of an increased anion gap metabolic acidosis, ketonemia, or significant ketonuria in a person with diabetes without significant glucose elevation. This can be seen with concomitant use of SGLT-2 inhibitors (currently not indicated in type 1 diabetes), heavy alcohol use, cocaine use, pancreatitis, sepsis, and chronic liver disease and in pregnancy 113 Treatment is similar to that for hyperglycemic diabetic ketoacidosis but can require earlier use and greater concentrations of a dextrose containing fluid for the insulin infusion in addition to 0.9% normal saline resuscitation fluid. 114

The diagnosis of diabetic ketoacidosis has evolved from a gluco-centric diagnosis to one requiring hyperketonemia. By definition, independent of blood glucose, a β-hydroxybutyrate concentration >3 mmol/L is required for diagnosis. 115 However, the use of this ketone for assessment of the severity of the diabetic ketoacidosis is controversial. 116 Bedside β-hydroxybutyrate testing during treatment is standard of care in many parts of the world (such as the UK) but not others (such as the US). Concerns have been raised about accuracy of bedside β-hydroxybutyrate meters, but this is related to concentrations above the threshold for diabetic ketoacidosis. 116

Goals for management of diabetic ketoacidosis include restoration of circulatory volume, correction of electrolyte imbalances, and treatment of hyperglycemia. Intravenous regular insulin infusion is the standard of care for treatment worldwide owing to rapidity of onset of action and rapid resolution of ketonemia and hyperglycemia. As hypoglycemia and hypokalemia are more common during treatment, insulin doses are now recommended to be reduced from 0.1 u/kg/h to 0.05 u/kg/h when glucose concentrations drop below 250 mg/dL or 14 mM. 115 Subcutaneous rapid acting insulin protocols have emerged as alternative treatments for mild to moderate diabetic ketoacidosis. 117 Such regimens seem to be safe and have the advantages of not requiring admission to intensive care, having lower rates of complications related to intravenous therapy, and requiring fewer resources. 117 118 Ketonemia and acidosis resolve within 24 hours in most people. 115 To prevent rebound hyperglycemia, the transition off an intravenous insulin drip must overlap subcutaneous insulin by at least two to four hours. 115

Hypoglycemia

Hypoglycemia, a common occurrence in people with type 1 diabetes, is a well appreciated effect of insulin treatment and occurs when blood glucose falls below the normal range. Increased susceptibility to hypoglycemia from exogenous insulin use in people with type 1 diabetes results from multiple factors, including imperfect subcutaneous insulin delivery tools, loss of glucagon within a few years of diagnosis, progressive impairment of the sympatho-adrenal response with repeated hypoglycemic episodes, and eventual development of impaired awareness. In 2017 the International Hypoglycemia Study Group developed guidance for definitions of hypoglycemia; on the basis of this, a glucose concentration of 3.0-3.9 mmol/L (54-70 mg/dL) was designated as level 1 hypoglycemia, signifying impending development of level 2 hypoglycemia—a glucose concentration <3 mmol/L (54 mg/dL). 119 120 At approximately 54 mg/dL, neuroglycopenic hypoglycemia symptoms, including vision and behavior changes, seizures, and loss of consciousness, begin to occur as a result of glucose deprivation of neurons in the central nervous system. This can eventually lead to cerebral dysfunction at concentrations <50 mg/dL. 121 Severe hypoglycemia (level 3), denoting severe cognitive and/or physical impairment and needing external assistance for recovery, is a common reason for emergency department visits and is more likely to occur in people with lower socioeconomic status and with the longest duration of diabetes. 112 Prevalence of self-reported severe hypoglycemia is very high according to a global population study that included more than 8000 people with type 1 diabetes. 122 Severe hypoglycemia occurred commonly in younger people with suboptimal glycemia according to a large electronic health record database study in the US. 123 Self- reported severe hypoglycemia is associated with a 3.4-fold increase in mortality. 124 125

Acute consequences of hypoglycemia include impaired cognitive function, temporary focal deficits including stroke-like symptoms, and memory deficits. 126 Cardiovascular effects including tachycardia, arrhythmias, QT prolongation, and bradycardia can occur. 127 Hypoglycemia can impair many activities of daily living, including motor vehicle safety. 128 In a survey of adults with type 1 diabetes who drive a vehicle at least once a week, 72% of respondents reported having hypoglycemia while driving, with around 5% reporting a motor vehicle accident due to hypoglycemia in the previous two years. 129 This contributes to the stress and fear that many patients face while grappling with the difficulties of ongoing hypoglycemia. 130

Glucagon is highly efficacious for the primary treatment of severe hypoglycemia when a patient is unable to ingest carbohydrate safely, but it is unfortunately under-prescribed and underused. 131 132 Availability of nasal, ready to inject, and shelf-stable liquid glucagon formulations have superseded the need for reconstituting older injectable glucagon preparations before administration and are now preferred. 133 134 Real time CGM studies have shown a decreased hypoglycemic exposure in people with impaired awareness without a change in HbA 1c . 34 135 136 137 138 CGM has shown benefit in decreasing hypoglycemia across the lifespan, including in teens, young adults, and older people. 36 139 Although CGM reduces the burden of hypoglycemia including severe hypoglycemia, it does not eliminate it; overall, such severe level 3 hypoglycemia rates in clinical trials are very low and hard to decipher in the real world. HCL insulin delivery systems integrated with CGM have been shown to decrease hypoglycemia. Among available rapid acting insulins, ultra-rapid acting lispro (lispro-aabc) seems to be associated with less frequent hypoglycemia in type 1 diabetes. 140 141

As prevention of hypoglycemia is a crucial aspect of diabetes management, formal training programs to increase awareness and education on avoidance of hypoglycemia, such as the UK’s Dose Adjustment for Normal Eating (DAFNE), have been developed. 142 143 This program has shown fewer severe hypoglycemia (mean 1.7 (standard deviation 8.5) episodes per person per year before training to 0.6 (3.7) episodes one year after training) and restoration of recognition of hypoglycemia in 43% of people reporting unawareness. Clinically relevant anxiety and depression fell from 24.4% to 18.0% and from 20.9% to 15.5%, respectively. A structured education program with cognitive and psychotherapeutic aspects for changing hypoglycemia related behaviors, called the Hypoglycemia Awareness Restoration Program despite optimized self-care (HARPdoc), showed a positive effect on changing unhelpful beliefs around hypoglycemia and improved diabetes related and general distress and anxiety scores. 144

Management in under-resourced settings

According to a recent estimate from the International Diabetes Federation, 1.8 million people with type 1 diabetes live in low and middle income countries (LMICs). 2 In many LMICs, the actual burden of type 1 diabetes remains unknown and material resources needed to manage type 1 diabetes are lacking. 145 146 Health systems in these settings are underequipped to tackle the complex chronic disease that is type 1 diabetes. Few diabetes and endocrinology specialist physicians are available owing to lack of specific postgraduate training programs in many LMICs; general practitioners with little to no clinical experience in managing type 1 diabetes care for these patients. 146 This, along with poor availability and affordability of insulin and lack of access to technology, results in high mortality rates. 147 148 149 In developed nations, low socioeconomic status is associated with higher levels of mortality and morbidity for adults with type 1 diabetes despite access to a universal healthcare system. 150 Although global governments have committed to universal health coverage and therefore widespread availability of insulin, it remains very far from realization in most LMICs. 151

Access to technology is patchy and varies globally. In the UST1DX, CGM use was least in the lowest fifth of socioeconomic status. 152 Even where technology is available, successful engagement does not always occur. 153 In a US cohort, lower CGM use was seen in non-Hispanic Black children owing to lower rates of device initiation and higher rates of discontinuation. 154 In many LMICs, blood glucose testing strips are not readily available and cost more than insulin. 151 In resource limited settings, where even diagnosis, basic treatments including insulin, syringes, and diabetes education are limited, use of CGM adds additional burden to patients. Need for support services and the time/resources needed to download and interpret data are limiting factors from a clinician’s perspective. Current rates of CGM use in many LMICs are unknown.

Inequities in the availability of and access to certain insulin formulations continue to plague diabetes care. 155 In developed countries such as the US, rising costs have led to insulin rationing by around 25% of people with type 1 diabetes. 156 LMICs have similar trends while also remaining burdened by disproportionate mortality and complications from type 1 diabetes. 155 157 With the inclusion of long acting insulin analogs in the World Health Organization’s Model List of Essential Medicines in 2021, hope has arisen that these will be included as standard of care across the world. 158 In the past, the pricing of long acting analogs has limited their use in resource poor settings 159 ; however, their inclusion in WHO’s list was a major step in improving their affordability. 158 With the introduction of lower cost long acting insulin biosimilars, improved access to these worldwide in the future can be anticipated. 160

Making insulin available is not enough on its own to improve the prognosis for patients with diabetes in resource poor settings. 161 Improved healthcare infrastructure, better availability of diabetes supplies, and trained personnel are all critical to improving type 1 diabetes care in LMICs. 161 Despite awareness of limitations and barriers, a clear understanding of how to implement management strategies in these settings is still lacking. The Global Diabetes Compact was launched in 2021 with the goal of increasing access to treatment and improving outcomes for people with diabetes across the globe. 162

Emerging technologies and treatments

Monitoring systems.

The ability to measure urinary or more recently blood ketone concentrations is an integral part of self-management of type 1 diabetes, especially during acute illness, intermittent fasting, and religious fasts to prevent diabetic ketoacidosis. 163 Many people with type 1 diabetes do not adhere to urine or blood ketone testing, which likely results in unnecessary episodes of diabetic ketoacidosis. 164 Noting that blood and urine ketone testing is not widely available in all countries and settings is important. 1 Regular assessment of patients’ access to ketone testing (blood or urine) is critical for all clinicians. Euglycemic diabetic ketoacidosis in type 1 diabetes is a particular problem with concomitant use of SGLT-2 inhibitors; for this reason, these agents are not approved for use in these patients. For sick day management (and possibly for the future use of SGLT-2 inhibitors in people with type 1 diabetes), it is hoped that continuous ketone monitoring (CKM) can mitigate the risks of diabetic ketoacidosis. 165 Like CGM, the initial CKM device measures interstitial fluid β-hydroxybutyrate instead of glucose. CKM use becomes important in conjunction with a hybrid closed loop insulin pump system and added SGLT-2 inhibitor therapy, where insulin interruptions are common and hyperketonemia is frequent. 166

Perhaps the greatest technological challenge to date has been the development of non-invasive glucose monitoring. Numerous attempts have been made using strategies including optics, microwave, and electrochemistry. 167 Lack of success to date has resulted in healthy skepticism from the medical community. 168 However, active interest in the development of non-invasive technology with either interstitial or blood glucose remains.

Insulin and delivery systems

In the immediate future, two weekly basal insulins, insulin icodec and basal insulin Fc, may become available. 169 Studies of insulin icodec in type 1 diabetes are ongoing (ONWARDS 6; NCT04848480 ). How these insulins will be incorporated in management of type 1 diabetes is not yet clear.

Currently available AID systems use only a single hormone, insulin. Dual hormone AID systems incorporating glucagon are in development. 170 171 Barriers to the use of dual hormone systems include the need for a second chamber in the pump, a lack of stable glucagon formulations approved for long term subcutaneous delivery, lack of demonstrated long term safety, and gastrointestinal side effects from glucagon use. 74 Similarly, co-formulations of insulin and amylin (a hormone co-secreted with insulin and deficient in people with type 1 diabetes) are in development. 172

Immunotherapy for type 1 diabetes

As our understanding of the immunology of type 1 diabetes expands, development of the next generation of immunotherapies is under active pursuit. Antigen specific therapies, peptide immunotherapy, immune tolerance using DNA vaccination, and regulatory T cell based adoptive transfer targeting β cell senescence are all future opportunities for drug development. Combining immunotherapies with metabolic therapies such as GLP-1 receptor agonists to help to improve β cell mass is being actively investigated.

The quest for β cell replacement methods is ongoing. Transplantation of stem cell derived islets offers promise for personalized regenerative therapies as a potentially curative method that does away with the need for donor tissue. Since the first in vivo model of glucose responsive β cells derived from human embryonic stem cells, 173 different approaches have been attempted. Mesenchymal stromal cell treatment and autologous hematopoietic stem cells in newly diagnosed type 1 diabetes may preserve β cell function without any safety signals. 174 175 176 Stem cell transplantation for type 1 diabetes remains investigational. Encapsulation, in which β cells are protected using a physical barrier to prevent immune attack and avoid lifelong immunosuppression, and gene therapy techniques using CRISPR technology also remain in early stages of investigation.

Until recently, no specific guidelines for management of type 1 diabetes existed and management guidance was combined with consensus statements developed for type 2 diabetes. Table 6 summarizes available guidance and statements from various societies. A consensus report for management of type 1 diabetes in adults by the ADA and European Association for the Study of Diabetes became available in 2021; it covers several topics of diagnosis and management of type 1 diabetes, including glucose monitoring, insulin therapy, and acute complications. Similarly, the National Institute for Health and Care Excellence also offers guidance on management of various aspects of type 1 diabetes. Consensus statements for use of CGM, insulin pump, and AID systems are also available.

Guidelines in type 1 diabetes

Conclusions

Type 1 diabetes is a complex chronic condition with increasing worldwide prevalence affecting several million people. Several successes in management of type 1 diabetes have occurred over the years from the serendipitous discovery of insulin in 1921 to blood glucose monitoring, insulin pumps, transplantation, and immunomodulation. The past two decades have seen advancements in diagnosis, treatment, and technology including development of analog insulins, CGM, and advanced insulin delivery systems. Although we have gained a broad understanding on many important aspects of type 1 diabetes, gaps still exist. Pivotal research continues targeting immune targets to prevent or delay onset of type 1 diabetes. Although insulin is likely the oldest of existing modern drugs, no low priced generic supply of insulin exists anywhere in the world. Management of type 1 diabetes in under resourced areas continues to be a multifaceted problem with social, cultural, and political barriers.

Glossary of abbreviations

ADA—American Diabetes Association

AID—automated insulin delivery

BGM—blood glucose monitoring

CGM—continuous glucose monitoring

CKM—continuous ketone monitoring

DCCT—Diabetes Control and Complications Trial

DIY—do-it-yourself

FDA—Food and Drug Administration

GADA—glutamic acid decarboxylase antibody

GLP-1—glucagon-like peptide 1

GRS—genetic risk scoring

HbA1c—glycated hemoglobin

HCL—hybrid closed loop

LADA—latent autoimmune diabetes of adults

LMIC—low and middle income country

PAKT—pancreas after kidney transplant

RCT—randomized controlled trial

SGLT-2—sodium-glucose cotransporter 2

SPKT—simultaneous pancreas-kidney transplant

Questions for future research

What future new technologies can be helpful in management of type 1 diabetes?

How can newer insulin delivery methods benefit people with type 1 diabetes?

What is the role of disease modifying treatments in prevention and delay of type 1 diabetes?

Is there a role for sodium-glucose co-transporter inhibitors or glucagon-like peptide 1 receptor angonists in the management of type 1 diabetes?

As the population with type 1 diabetes ages, how should management of these people be tailored?

How can we better serve people with type 1 diabetes who live in under-resourced settings with limited access to medications and technology?

How patients were involved in the creation of this manuscript

A person with lived experience of type 1 diabetes reviewed a draft of the manuscript and offered input on important aspects of their experience that should be included. This person is involved in large scale education and activism around type 1 diabetes. They offered their views on various aspects of type 1 diabetes, especially the use of adjuvant therapies and the burden of living with diabetes. This person also raised the importance of education of general practitioners on the various stages of type 1 diabetes and the management aspects. On the basis of this feedback, we have highlighted the burden of living with diabetes on a daily basis.

Series explanation: State of the Art Reviews are commissioned on the basis of their relevance to academics and specialists in the US and internationally. For this reason they are written predominantly by US authors

Contributors: SS and IBH contributed to the planning, drafting, and critical review of this manuscript. FNK contributed to the drafting of portions of the manuscript. All three authors are responsible for the overall content as guarantors.

Competing interests: We have read and understood the BMJ policy on declaration of interests and declare the following interests: SS has received an honorarium from Abbott Diabetes Care; IBH has received honorariums from Abbott Diabetes Care, Lifescan, embecta, and Hagar and research support from Dexcom and Insulet.

Provenance and peer review: Commissioned; externally peer reviewed.

  • DeVries JH ,
  • Hess-Fischl A ,
  • Gregory GA ,
  • Robinson TIG ,
  • Linklater SE ,
  • International Diabetes Federation Diabetes Atlas Type 1 Diabetes in Adults Special Interest Group
  • Harding JL ,
  • Wander PL ,
  • Dabelea D ,
  • Mayer-Davis EJ ,
  • SEARCH for Diabetes in Youth Study
  • Lawrence JM ,
  • SEARCH for Diabetes in Youth Study Group
  • Fazeli Farsani S ,
  • Souverein PC ,
  • van der Vorst MM ,
  • Sutherland J ,
  • Rokszin G ,
  • Stahl-Pehe A ,
  • Kamrath C ,
  • Atkinson MA ,
  • Bingley PJ ,
  • Bonifacio E ,
  • Leslie RD ,
  • Evans-Molina C ,
  • Freund-Brown J ,
  • Thomas NJ ,
  • Zimmet PZ ,
  • Rowley MJ ,
  • Knowles W ,
  • Fourlanos S ,
  • Greenbaum CJ ,
  • ElSayed NA ,
  • American Diabetes Association
  • Miller RG ,
  • Secrest AM ,
  • Sharma RK ,
  • Songer TJ ,
  • McDonald T ,
  • Greenfield JR
  • Tridgell DM ,
  • Spiekerman C ,
  • Greenbaum CJ
  • Glessner J ,
  • Foster NC ,
  • Miller KM ,
  • Becker DJ ,
  • Khawandanah J
  • Pedrosa MR ,
  • Franco DR ,
  • Gieremek HW ,
  • Nathan DM ,
  • Diabetes Control and Complications Trial Research Group
  • Klonoff DC ,
  • Parkes JL ,
  • Kovatchev BP ,
  • Raghinaru D ,
  • iDCL Trial Research Group
  • Riddlesworth T ,
  • DIAMOND Study Group
  • Leelarathna L ,
  • Neupane S ,
  • FLASH-UK Trial Study Group
  • Polonsky W ,
  • Hirsch IB ,
  • Pratley RE ,
  • Kanapka LG ,
  • Rickels MR ,
  • Wireless Innovation for Seniors With Diabetes Mellitus (WISDM) Study Group
  • Tauschmann M ,
  • APCam11 Consortium
  • Russell SJ ,
  • Damiano ER ,
  • Bionic Pancreas Research Group
  • Bailey TS ,
  • Group Information ,
  • Bergenstal RM ,
  • Dellva MA ,
  • Mathieu C ,
  • Herold KC ,
  • Type 1 Diabetes TrialNet Study Group
  • Libman IM ,
  • DiMeglio LA ,
  • T1D Exchange Clinic Network Metformin RCT Study Group
  • Petrie JR ,
  • Chaturvedi N ,
  • REMOVAL Study Group
  • Dandona P ,
  • Phillip M ,
  • DEPICT-1 Investigators
  • Rosenstock J ,
  • Marquard J ,
  • Laffel LM ,
  • Hemmingsson JU ,
  • ADJUNCT ONE Investigators
  • Pieber TR ,
  • ADJUNCT TWO Investigators
  • Reynolds J ,
  • Battelino T ,
  • Liljenquist D ,
  • Becker RH ,
  • Bergmann K ,
  • Lehmann A ,
  • Cheng AYY ,
  • Stender-Petersen K ,
  • Hövelmann U ,
  • Carlson AL ,
  • Komatsu M ,
  • Coutant DE ,
  • Stamati A ,
  • Karagiannis T ,
  • Christoforidis A
  • Heinemann L ,
  • Baughman R ,
  • Akturk HK ,
  • Snell-Bergeon JK ,
  • Prabhu JN ,
  • Seyed Ahmadi S ,
  • Westman K ,
  • Pivodic A ,
  • Hermann JM ,
  • Freiberg C ,
  • DPV Initiative
  • Dicembrini I ,
  • Cosentino C ,
  • Mannucci E ,
  • Abelseth J ,
  • Karageorgiou V ,
  • Papaioannou TG ,
  • Weisman A ,
  • Cardinez M ,
  • Kramer CK ,
  • Asarani NAM ,
  • Reynolds AN ,
  • Elbalshy M ,
  • Jennings P ,
  • Burnside MJ ,
  • Williman JA ,
  • Fridell JA ,
  • Stratta RJ ,
  • Gruessner AC
  • Robertson RP
  • Shapiro AM ,
  • Pepper AR ,
  • Shapiro AMJ
  • Walker JT ,
  • Saunders DC ,
  • Brissova M ,
  • Gitelman SE ,
  • Bluestone JA
  • Hagopian W ,
  • Ferry RJ Jr . ,
  • Protégé Trial Investigators
  • von Scholten BJ ,
  • Kreiner FF ,
  • Gough SCL ,
  • von Herrath M
  • Type 1 Diabetes TrialNet Abatacept Study Group
  • Hardie DG ,
  • Dejgaard TF ,
  • Christiansen E ,
  • ADJUNCT ONE and ADJUNCT TWO Investigators
  • Yunasan E ,
  • Peters AL ,
  • Palanca A ,
  • van Nes F ,
  • Ampudia Blasco FJ ,
  • Dobbins RL ,
  • Greenway FL ,
  • Zambrowicz BP ,
  • Brodovicz K ,
  • Soleymanlou N ,
  • Wissinger E ,
  • Juhaeri J ,
  • Mayer-Davis EJ
  • Dhatariya KK ,
  • Glaser NS ,
  • Umpierrez GE
  • Ramphul K ,
  • Umpierrez G ,
  • Korytkowski M
  • Weinstock RS ,
  • T1D Exchange Clinic Network
  • Eshkoli T ,
  • Brandstaetter E ,
  • Jotkowitz A
  • Dhatariya KK
  • Joint British Diabetes Societies for Inpatient Care
  • Kilpatrick ES ,
  • Butler AE ,
  • Ostlundh L ,
  • Koufakis T ,
  • Agiostratidou G ,
  • International Hypoglycaemia Study Group
  • van de Ven KC ,
  • Heerschap A ,
  • van der Graaf M ,
  • de Galan BE
  • Alsifri S ,
  • Aronson R ,
  • HAT Investigator Group
  • Pettus JH ,
  • Shepherd L ,
  • Van Houten HK ,
  • Ziegenfuss JY ,
  • Wermers RA ,
  • Schernthaner G ,
  • Anderson J ,
  • Saunders AL ,
  • Snell-Bergeon J ,
  • Forlenza GP ,
  • Bispham J ,
  • Gabbay RA ,
  • Pontiroli AE ,
  • Tagliabue E
  • T1D Exchange Intranasal Glucagon Investigators
  • Freckmann G ,
  • Ehrmann D ,
  • El Laboudi A ,
  • Spanudakis E ,
  • Anantharaja S ,
  • Peleckis AJ ,
  • Dalton-Bakes C ,
  • van Beers CA ,
  • Kleijer SJ ,
  • CGM Intervention in Teens and Young Adults with T1D (CITY) Study Group ,
  • Piras de Oliveira C ,
  • Ribeiro A ,
  • Chigutsa F ,
  • Malecki MT ,
  • Hopkins D ,
  • Lawrence I ,
  • Mansell P ,
  • Stanton-Fay SH ,
  • Hamilton K ,
  • Chadwick PM ,
  • DAFNEplus study group
  • Goldsmith K ,
  • Yudkin JS ,
  • Buntinx F ,
  • Mapatano MA ,
  • De Clerck M ,
  • Truyers C ,
  • Chambers D ,
  • O’Cathain A
  • Klatman EL ,
  • Auzanneau M ,
  • Tanenbaum ML ,
  • Iturralde E ,
  • Lipman TH ,
  • Bhutta ZA ,
  • Pfiester E ,
  • Thieffry A ,
  • Ballhausen H ,
  • Gajewska KA ,
  • O’Donnell S
  • Wareham NJ ,
  • Joosse HJ ,
  • Raposo JF ,
  • de Courten M
  • Hemmingsen B ,
  • Abouhassan T ,
  • Albanese-O’Neill A ,
  • Jacobsen L ,
  • Haller MJ ,
  • Castorino K ,
  • Lovblom LE ,
  • Cardinez N ,
  • Nguyen KT ,
  • Andersen G ,
  • Meiffren G ,
  • Famulla S ,
  • Castellanos LE ,
  • Balliro CA ,
  • Sherwood JS ,
  • Tsoukas MA ,
  • Bernier-Twardy S ,
  • Martinson LA ,
  • Carlsson PO ,
  • Schwarcz E ,
  • Korsgren O ,
  • Oliveira MC ,
  • Stracieri AB ,
  • Buzzetti R ,
  • Mauricio D ,
  • McGibbon A ,
  • Ingersoll K ,
  • Tugwell B ,
  • Diabetes Canada Clinical Practice Guidelines Expert Committee
  • Fleming GA ,
  • McCall AL ,
  • Gianchandani R ,

new research on diabetes type 1

  • Type 2 Diabetes
  • Heart Disease
  • Digestive Health
  • Multiple Sclerosis
  • Diet & Nutrition
  • Health Insurance
  • Public Health
  • Patient Rights
  • Caregivers & Loved Ones
  • End of Life Concerns
  • Health News
  • Thyroid Test Analyzer
  • Doctor Discussion Guides
  • Hemoglobin A1c Test Analyzer
  • Lipid Test Analyzer
  • Complete Blood Count (CBC) Analyzer
  • What to Buy
  • Editorial Process
  • Meet Our Medical Expert Board

New Type 1 Diabetes Treatment Eliminates Need for Insulin

Key takeaways.

  • The FDA has approved a new drug called Lantidra to manage low blood sugar in people with type 1 diabetes.
  • The drug helps control blood sugar levels through an infusion of donor pancreatic cells that create insulin in the body so that patients no longer need to take external insulin.
  • This drug is for people with severe and recurrent hypoglycemia who are unable to achieve target blood sugar levels.

In June, the FDA approved Lantidra—the first donor cell therapy for people with type 1 diabetes who struggle with severe and recurrent low blood sugar. The drug eliminates the need for external insulin, and avoids something as invasive as an islet cell transplant.

Lantidra (donislecel-jujn) is for people who have trouble managing their blood sugar and suffer from hypoglycemia, or for people who have hypoglycemia unawareness—a condition where patients are unable to detect their dropping blood sugar and might not be able to treat it before it drops to potentially dangerous levels. This can be a life-threatening condition that is not easily treatable with medication.

“Severe hypoglycemia is a dangerous condition that can lead to injuries resulting from loss of consciousness or seizures,” said Peter Marks, MD, PhD, director of the FDA’s Center for Biologics Evaluation and Research, in a FDA press release about Lantidra. “Today’s approval, the first-ever cell therapy to treat patients with type 1 diabetes, provides individuals living with type 1 diabetes and recurrent severe hypoglycemia an additional treatment option to help achieve target blood glucose levels.”

Developed by CellTrans, Lantidra is an infusion of islet cells from a deceased donor into the liver portal vein of the diabetic patient. Because the infused cells restore functional pancreatic islet cells in people with type 1 diabetes, external insulin is no longer necessary.

Small—But Successful—Clinical Trials Led to Approval

Lantidra’s safety was studied in two non-randomized trials with 30 participants who live with type 1 diabetes and hypoglycemic unawareness. The patients received at least one Lantidra infusion and a maximum of three infusions, the FDA said in its press release.

After their infusions, 21 patients did not need to take insulin for a year or more. Eleven patients did not need insulin for one to five years and 10 participants did not need insulin for more than five years. Five patients required external insulin after the infusions, and did not achieve any insulin independence.

During the trials there were two deaths—one from multiorgan failure with sepsis about one-and-a-half years after the first infusion, and one from progressive confusion, global atrophy and micro-ischemic disease almost 10 years after the first dose. Both subjects were on immunosuppression at the time.

What to Know About Lantidra

This drug was specifically approved to tackle ongoing and severe low blood sugar in patients with type 1 diabetes who are unable to reach target blood sugar levels despite intensive diabetes management and education.

Type 1 diabetes is a disease where the body's own immune system starts attacking the insulin producing cells of the pancreas, Omid Veiseh, PhD , an associate professor of bioengineering at Rice University, told Verywell. Once those cells are killed off, the patient can no longer regulate their blood glucose, meaning they need to rely on external insulin.

“This new drug gets those insulin producing cells from deceased donors…then they’re purified to be safe in terms of pathogens and whatnot—and then they’re infused into type 1 diabetic recipients,” Veiseh said. “But because the disease is autoimmune mediated, and the cells are from a donor, the patient will receive immunosuppression [medication]. The immune suppression basically protects the cells from the host’s immune response.”

Up until now, patients with recurrent and severe hypoglycemia have had to work with their endocrinologist to manage blood sugar as best as they can through the dosing of their insulin as well as diet and exercise. In severe cases, the use of glucagon , which helps rescue patients from an episode of hypoglycemia, is used, said Fernando Ovalle, MD , director of the Division of Endocrinology, Diabetes and Metabolism at the University of Alabama at Birmingham School of Medicine.

“You don’t want to have hypoglycemia, especially severe or repeated,” Ovalle told Verywell, explaining that a severe low blood sugar can result in incidents like falling and hitting your head, cardiac arrest, or seizures.

For patients for whom ongoing hypoglycemia poses a great threat to their health, including death, an islet cell transplant might be considered. During this procedure, islets are taken from the pancreas of a deceased organ donor, then transferred into a patient with type 1 diabetes. Once the cells are implanted in the liver, they are able to make insulin.  

Lantidra introduces healthy islet cells without requiring a transplant procedure.

Veiseh said advancements like Lantidra are giving hope to the medical and type 1 diabetes community. In the future, advancements will likely include replaceable cell types that can be lab-grown—so you don’t have to rely on donors—as well as localized immunosuppression strategies. This means that only the site that cells are infused into will need to be immunosuppressed, not the entire body.

“I think, in the next five or 10 years, we’re going to see a lot more of these islet replacement therapies, on the market,” Veiseh said. “And it’s going to be great for patients, because the cure is to replace those missing cells that have been killed off.”

How Lantidra Is Administered

Lantidra is a prescription medication that is administered by a healthcare professional via infusion into the liver. The recommended minimum dose is 5,000 equivalent islet number (EIN) per kg for the first infusion, and 4,500 EIN/kg for subsequent infusions, the drugmaker said.

The drug is currently only recommended for people who experience recurrent and severe hypoglycemia or have hypoglycemia unawareness. It is not for all people with type 1 diabetes, or for people with type 2 diabetes. It’s best for any patient considering the drug to first consult with their healthcare provider to see if they are the right candidate.

Lantidra is given in a single infusion dose. An additional dose or two may be necessary depending on whether the patient responds to the first infusion and achieves independence from external insulin within one year. In other words, if the first infusion is not successful, another dose might be needed. There is currently no data on the effectiveness or safety for patients who have more than three infusions.

How Does Lantidra Work?

Lantidra is an infusion of islet cells from a deceased donor into the liver portal vein of the diabetic patient. The infused cells restore functional pancreatic islet cells in people with type 1 diabetes, removing the need for external insulin.

Known Side Effects

In clinical trials, there were a series of adverse reactions associated with Lantidra. The drugmaker said these varied with each participant and depended on the number of infusions they received. 

Ninety percent of trial participants had at least one serious adverse reaction, and the major causes were attributed to the infusion procedure and immunosuppression drugs. Some of these side effects meant that the patient needed to stop taking the immunosuppressants, which stopped the drug from working.

Some of the most common reactions were nausea, fatigue, anemia, diarrhea, and abdominal pain.  

Aside from the side effects of Lantidra itself, there are risks with taking immunosuppressants for a long period of time, including risk of infections, lymphomas and anemia.

“These adverse events should be considered when assessing the benefits and risks of Lantidra for each patient,” the FDA said in its press release.

While the safety of taking Lantidra while pregnant has not been assessed, there are known risks for being on immunosuppressants while expecting. Fetal malformations are associated with some of the suppression drugs, therefore the drugmaker warns patients should have a confirmed negative pregnancy test before starting Lantidra.

How to Get Lantidra

Veiseh said because Lantidra relies on donor cells, CellTrans has a limited supply of the drug.

“You’re sort of at the mercy of donors being available,” he said. “I think the best estimates put this at 2,000 to 4,000 patients per year that you could treat just because of the limitation of organ availability.”

However, Veiseh said Lantidra is a step in the right direction for patients with type 1 diabetes who suffer from severe, ongoing low blood sugar. It is giving them another option instead of an islet cell transplant—a procedure that is only available in certain healthcare settings.

“In other countries, this kind of therapy has been available and reimbursed by insurance for years, but in the U.S., it was sort of a patchwork system of various surgeons that did it but it wasn’t really available to everyone,” said Veiseh. The National Institute of Diabetes and Digestive and Kidney Diseases has said that islet transplantation is considered an experimental procedure, and until it’s approved as a treatment for type 1 diabetes, it can only be performed for research purposes through clinical trials and is generally not covered by insurance.

“I think this is really a big step forward towards making this a potential solution that is uniformly available to all the patients as opposed to just certain ones,” Veiseh said.

University of California San Francisco Department of Surgery. Islet transplant for type 1 diabetes . 

Food and Drug Administration. FDA approves first cellular therapy to treat patients with type 1 diabetes .

Food and Drug Administration. Lantidra [drug label].

By Laura Hensley Hensley is an award-winning health and lifestyle journalist based in Canada. Her work has appeared in various outlets, including Best Health Magazine, Refinery29, Global News, and the National Post.

Breakthrough diabetes study could lead to end of regular insulin injections, researchers say

Topic: Health

Researchers say they have made a breakthrough in the treatment of type 1 diabetes which could replace the need for regular insulin injections.

Research published by Baker Heart and Diabetes Institute scientists shows they have manipulated existing pancreatic stem cells to prompt them to produce insulin.

The study from the Melbourne researchers builds on previous work by Monash University scientists, using two existing cancer drugs. 

The research is still in its early days and the next step will be pre-clinical animal trials.

But lead researcher and Baker institute scientist, Sam El-Osta, said the potential treatment could be viable for children and adults in the future.

"What we've discovered is the ability to harness the patient's remaining pancreatic cells to influence those cells to behave like insulin-producing beta cells," Professor El-Osta told ABC Radio Melbourne.

"This could potentially modify the course of diabetes and potentially eliminate the need for round-the-clock insulin injections in some people living with type 1 diabetes."

A small insulin pump inserted into a woman's stomach

Researchers say the breakthrough could lead to an alternative treatment to regular insulin injections. ( ABC Tropical North: Sophie Meixner )

Broadly, people with diabetes do not naturally produce enough insulin, or their bodies do not use the hormone as they should.

For many people with diabetes, it means multiple insulin injections are required daily to manage the illness.

Research could be 'holy grail'

The two cancer drugs used in the research are already approved by the US Food and Drug Administration.

Researchers said the potential treatment could be "rapid" compared to current treatment options for type 1 diabetes.

"We've been able to repurpose these drugs to determine whether we could influence the trajectory by using these small molecule inhibitors in pancreatic ductal cells," Professor El-Osta said.

"We can quickly influence insulin restoration in a number of days in a dish from tissues derived from type 1 diabetes donors, both children and adults."

Diabetes Australia estimates around 134,000 people in Australia are living with type 1 diabetes, which represents about 10 per cent of all diabetes cases.

The Baker Heart and Diabetes Institute researchers are optimistic their work could potentially help people living with insulin-dependent type 2 diabetes.

The research has been published in a Nature scientific journal, Signal Transduction and Targeted Therapy.

Insulin testing equipment with a needle to the right and a small electronic device for testing levels left

It's estimated more than 130,000 people in Australia are living with type 1 diabetes. ( ABC Local: Damien Larkins )

Chief executive of the Australian Diabetes Society and University of Melbourne associate professor, Sof Andrikopoulos, labelled the research as "remarkable". 

"For the 135,000 Australians with type 1 diabetes, this is the holy grail. This is it," he said. 

"There's a potential here that this research might lead to the cure of type 1 diabetes, at some point down the road.

"It also has the potential to make a significant improvement in type 2 diabetes."

Dr Andrikopoulos, who was not involved with the study, said the research would reduce the burden of the disease.

"This research has the potential for the body itself, to produce and secrete insulin. So you can see that you're getting rid of needles, you're getting rid of insulin pumps, you're getting rid of finger pricking, you're getting rid of continuous glucose monitors," he said.

While he was hopeful for the future, Dr Andrikopoulos warned steps towards a cure would require consistent funding for diabetes research.

  • Skip to main content
  • Skip to FDA Search
  • Skip to in this section menu
  • Skip to footer links

U.S. flag

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you're on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

U.S. Food and Drug Administration

  •   Search
  •   Menu
  • News & Events
  • FDA Newsroom
  • Press Announcements

FDA Approves First Cellular Therapy to Treat Patients with Type 1 Diabetes

FDA News Release

Today, the U.S. Food and Drug Administration approved Lantidra, the first allogeneic (donor) pancreatic islet cellular therapy made from deceased donor pancreatic cells for the treatment of type 1 diabetes. Lantidra is approved for the treatment of adults with type 1 diabetes who are unable to approach target glycated hemoglobin (average blood glucose levels) because of current repeated episodes of severe hypoglycemia (low blood sugar) despite intensive diabetes management and education.

“Severe hypoglycemia is a dangerous condition that can lead to injuries resulting from loss of consciousness or seizures,” said Peter Marks, M.D., Ph.D., director of the FDA’s Center for Biologics Evaluation and Research. “Today’s approval, the first-ever cell therapy to treat patients with type 1 diabetes, provides individuals living with type 1 diabetes and recurrent severe hypoglycemia an additional treatment option to help achieve target blood glucose levels.”

Type 1 diabetes is a chronic autoimmune disease that requires lifelong care including requiring insulin, either through multiple daily injections or continuous infusion using a pump, every day to live. People with type 1 diabetes also perform blood glucose checks several times a day to guide the management of their diabetes. 

Some people with type 1 diabetes have trouble managing the amount of insulin needed every day to prevent hyperglycemia (high blood sugar) without causing hypoglycemia. They may also develop hypoglycemia unawareness, where they are unable to detect their blood glucose is dropping and may not have a chance to treat themselves to prevent their blood glucose from further dropping. This makes it difficult to dose insulin. Lantidra provides a potential treatment option for these patients.

The primary mechanism of action of Lantidra is believed to be the secretion of insulin by the infused allogeneic islet beta cells. In some patients with type 1 diabetes, these infused cells can produce enough insulin, so the patient no longer needs to take insulin (by injections or pump) to control their blood sugar levels. Lantidra is administered as a single infusion into the hepatic (liver) portal vein. An additional infusion of Lantidra may be performed depending on the patient’s response to the initial dose. 

The safety and effectiveness of Lantidra was evaluated in two non-randomized, single-arm studies in which a total of 30 participants with type 1 diabetes and hypoglycemic unawareness received at least one infusion and a maximum of three infusions. Overall, 21 participants did not need to take insulin for a year or more, with 11 participants not needing insulin for one to five years and 10 participants not needing insulin for more than five years. Five participants did not achieve any days of insulin independence.

Adverse reactions associated with Lantidra varied with each participant depending on the number of infusions they received and the length of time they were followed and may not reflect the rates observed in practice The most common adverse reactions included nausea, fatigue, anemia, diarrhea and abdominal pain. A majority of participants experienced at least one serious adverse reaction related to the procedure for infusing Lantidra into the hepatic portal vein and the use of immunosuppressive medications needed to maintain the islet cell viability.  Some serious adverse reactions required discontinuation of immunosuppressive medications, which resulted in the loss of islet cell function and insulin independence. These adverse events should be considered when assessing the benefits and risks of Lantidra for each patient. Lantidra is approved with patient-directed labeling to inform patients with type 1 diabetes about benefits and risks of Lantidra. 

The FDA granted approval of Lantidra to CellTrans Inc.

The FDA, an agency within the U.S. Department of Health and Human Services, protects the public health by assuring the safety, effectiveness, and security of human and veterinary drugs, vaccines and other biological products for human use, and medical devices. The agency also is responsible for the safety and security of our nation’s food supply, cosmetics, dietary supplements, products that give off electronic radiation, and for regulating tobacco products.

  • Share full article

Advertisement

Supported by

A Cure for Type 1 Diabetes? For One Man, It Seems to Have Worked.

A new treatment using stem cells that produce insulin has surprised experts and given them hope for the 1.5 million Americans living with the disease.

new research on diabetes type 1

By Gina Kolata

Brian Shelton’s life was ruled by Type 1 diabetes.

When his blood sugar plummeted, he would lose consciousness without warning. He crashed his motorcycle into a wall. He passed out in a customer’s yard while delivering mail. Following that episode, his supervisor told him to retire, after a quarter century in the Postal Service. He was 57.

His ex-wife, Cindy Shelton, took him into her home in Elyria, Ohio. “I was afraid to leave him alone all day,” she said.

Early this year, she spotted a call for people with Type 1 diabetes to participate in a clinical trial by Vertex Pharmaceuticals. The company was testing a treatment developed over decades by a scientist who vowed to find a cure after his baby son and then his teenage daughter got the devastating disease.

Mr. Shelton was the first patient. On June 29, he got an infusion of cells, grown from stem cells but just like the insulin-producing pancreas cells his body lacked.

Now his body automatically controls its insulin and blood sugar levels.

Mr. Shelton, now 64, may be the first person cured of the disease with a new treatment that has experts daring to hope that help may be coming for many of the 1.5 million Americans suffering from Type 1 diabetes.

“It’s a whole new life,” Mr. Shelton said. “It’s like a miracle.”

Diabetes experts were astonished but urged caution. The study is continuing and will take five years, involving 17 people with severe cases of Type 1 diabetes. It is not intended as a treatment for the more common Type 2 diabetes.

We are having trouble retrieving the article content.

Please enable JavaScript in your browser settings.

Thank you for your patience while we verify access. If you are in Reader mode please exit and  log into  your Times account, or  subscribe  for all of The Times.

Thank you for your patience while we verify access.

Already a subscriber?  Log in .

Want all of The Times?  Subscribe .

  • Utility Menu

University Logo

GA4 tracking code

Home - HSCI Logo

A new therapy for treating Type 1 diabetes

Promising early results show that longstanding harvard stem cell institute (hsci) research may have paved the way for a breakthrough treatment of type 1 diabetes. utilizing research from the melton lab, vertex pharmaceuticals has developed vx-880, an investigational stem cell-derived, fully differentiated pancreatic islet cell replacement therapy for people with type 1 diabetes (t1d). in conjunction with immunosuppressive therapy, vx-880 produced robust restoration of islet cell function on day 90 in the first patient in its phase 1/2 clinical trial..

Beta Cells

The patient was treated with a single infusion of VX-880 at half the target dose in conjunction with immunosuppressive therapy. The patient, who was diagnosed with T1D 40 years ago and has been dependent on exogenous (injected) insulin, achieved successful engraftment and demonstrated rapid and robust improvements in multiple measures. These included increases in fasting and stimulated C-peptide, improvements in glycemic control, including HbA1c, and decreases in exogenous insulin requirement, signifying the restoration of insulin-producing islet cells.

VX-880 is not only a potential breakthrough in the treatment of T1D, it is also one of the very first demonstrations of the practical application of embryonic stem cells, using stem cells that have been differentiated into functional islets to treat a patient, explained Doug Melton, Ph.D., co-director of HSCI, is the Xander University Professor at Harvard and an Investigator of the Howard Hughes Medical Institute. Unlike prior treatments, this innovative therapy gives the patient functional hormone producing cells that control glucose metabolism. This potentially obviates the lifelong need for patients with diabetes to self-inject insulin as the replacement cells “provide the patient with the natural factory to make their own insulin,” explained Melton.

These results from the first patient treated with VX-880 are unprecedented. What makes these results truly remarkable is that they were achieved with only half the target dose,” said Bastiano Sanna, Ph.D., Executive Vice President and Chief of Cell and Genetic Therapies at Vertex. “While still early, these results support the continued progression of our VX-880 clinical studies, as well as future studies using our encapsulated islet cells, which hold the potential to be used without the need for immunosuppression.”

“As a surgeon who has worked in the field of islet cell transplantation for decades, this approach, which obviates the need for an organ donor, could be a game changer,” said James Markmann, M.D., Ph.D., Professor of Surgery and Chief of the Division of Transplant Surgery at Massachusetts General Hospital. “We are excited to progress this unique and potentially transformative medicine through clinical trials and to patients.”

“More than a decade ago our lab had a vision for developing an islet cell replacement therapy to provide a functional cure to people suffering from T1D,” said Melton, a founder and one of the first co-chairs of the Harvard Stem Cell and Regenerative Biology Department. “These promising results bring great hope that stem cell-derived, fully differentiated islet cells could deliver a life-changing therapy for people who suffer from the relentless life-long burden of T1D. I'm so grateful that Harvard and the Harvard Stem Cell Institute have supported this work.”

Latest News

How a small fish could lead to better strategies to repair tendon tears, jason buenrostro lands macarthur ‘genius grant’, new model for in vitro production of human brown fat cells lays groundwork for obesity, diabetes cell therapy, share this story, news by topic.

  • Alzheimer's Disease (8)
  • Bioengineering (31)
  • Blood Diseases (52)
  • Cancer (55)
  • Cardiovascular Disease (25)
  • Diabetes (30)
  • Endocrine Disease (1)
  • Eye Diseases (10)
  • Fibrosis (6)
  • Gastrointestinal Disease (8)
  • Genetics/Epigenetics (24)
  • Graft-Versus-Host Disease (1)
  • Hearing Loss (5)
  • Immunology (15)
  • Kidney Disease (12)
  • Liver Disease (6)
  • Lung Disease (9)
  • Multiple Sclerosis (1)

At the Forefront - UChicago Medicine

Study provides preliminary evidence in favor of a new type 1 diabetes treatment

A photograph of a mother helping her diabetic child monitor her blood sugar.

Type 1 diabetes is an autoimmune disease that causes the body's immune system to attack and destroy insulin-producing beta cells in the pancreas. Traditional management of type 1 diabetes has primarily involved replacing the missing insulin with injections which, though effective, can be expensive and burdensome. A new study led by researchers at the University of Chicago Medicine and Indiana University suggests that an existing drug could be repurposed to treat type 1 diabetes, potentially reducing dependence on insulin as the sole treatment.

The research centers on a medication known as α-difluoromethylornithine (DFMO), which inhibits an enzyme that plays a key role in cellular metabolism. The latest translational results are a culmination of years of research: In 2010, while corresponding author Raghu Mirmira, MD, PhD , was at Indiana University, he and his lab performed fundamental biochemistry experiments on beta cells in culture. They found that suppressing the metabolic pathway altered by DFMO helped protect the beta cells from environmental factors, hinting at the possibility of preserving and even restoring these vital cells in patients diagnosed with type 1 diabetes.

The researchers confirmed their observations preclinically in zebrafish and then in mice before senior author Linda DiMeglio, MD, MPH, Edwin Letzter Professor of Pediatrics at Indiana University School of Medicine and a pediatric endocrinologist at Riley Children's Health, launched a clinical trial to evaluate the safety and tolerability of the drug in type 1 diabetes patients. The results of the trial, which was funded by the Juvenile Diabetes Research Foundation (JDRF) and used DMFO provided by Panbela Therapeutics, indicated that the drug is safe for type 1 diabetes patients and can help keep insulin levels stable by protecting beta cells.

“As a physician-scientist, this is the kind of thing we’ve always strived for – to discover something at a very basic, fundamental level in cells and find a way to bring it into the clinic,” said Mirmira, who is now Professor of Medicine and an endocrinologist at UChicago Medicine. “It definitely underscores the importance of supporting basic science research.”

"It's been truly thrilling to witness the promising results in the pilot trial after this long journey, and we're excited to continue our meaningful collaboration," said DiMeglio.

Importantly, DFMO has already been FDA-approved as a high dose injection since 1990 for treating African Sleeping Sickness and received breakthrough therapy designation for neuroblastoma maintenance therapy after remission in 2020. Pre-existing regulatory approval could potentially facilitate its use in type 1 diabetes, saving effort and expense and getting the treatment to patients sooner.

“For a drug that’s already approved for other indications, the approval timeline can be a matter of years instead of decades once you have solid clinical evidence for safety and efficacy,” said Mirmira. “Using a new formulation of DFMO as a pill allows patients to take it by mouth instead of needing to undergo regular injections, and it has a very favorable side effect profile. It’s exciting to say we have a drug that works differently from every other treatment we have for this disease.”

To follow up on the recently published results, first and co-corresponding author Emily K. Sims, MD, Associate Professor of Pediatrics at IU School of Medicine and a pediatric endocrinologist at Riley Children's Health, launched a multi-center clinical trial, also funded by JDRF – with UChicago among the trial sites – to gather even stronger data regarding the efficacy of DFMO as a type 1 diabetes treatment.

"With our promising early findings, we hold hope that DFMO, possibly as part of a combination therapy, could offer potential benefits to preserve insulin secretion in individuals with recent-onset type 1 diabetes and ultimately also be tested in those who are at risk of developing the condition," said Sims.

“A new era is dawning where we’re thinking of novel ways to modify the disease using different types of drugs and targets that we didn’t classically think of in type 1 diabetes treatment,” said Mirmira.

The study, “Inhibition of Polyamine Biosynthesis Preserves β-Cell Function in Type 1 Diabetes,” was published in Cell Medicine Reports in November 2023. Co-authors include Emily K. Sims, Abhishek Kulkarni, Audrey Hull, Stephanie E. Woerner, Susanne Cabrera, Lucy D. Mastrandrea, Batoul Hammoud, Soumyadeep Sarkar, Ernesto S. Nakayasu, Teresa L. Mastracci, Susan M. Perkins, Fangqian Ouyang, Bobbie-Jo Webb-Robertson, Jacob R. Enriquez, Sarah A. Tersey, Carmella Evans-Molina, S. Alice Long, Lori Blanchfield, Eugene W. Gerner, Raghavendra Mirmira, and Linda A. DiMeglio.

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • Elsevier - PMC COVID-19 Collection

Logo of pheelsevier

New and Emerging Technologies in Type 1 Diabetes

There has been a rapid advancement in the pace of development of new diabetes technologies and therapies for the management of type 1 diabetes over the past decade. The Diabetes Control and Complications Trial conclusively established that tight glycemic control with intensive insulin therapy decreases the rates of diabetes complications in proportion to glycemic control, and diabetes technologies have accordingly been developed to help patients reach these goals. In this review, the authors discuss new diabetes therapeutics and technologies, including new insulin analogues, insulin pumps, continuous glucose monitoring systems, and automated insulin delivery systems.”

  • • Innovative and novel technologies for the management of type 1 diabetes hold promise for improving glycemia, decreasing burden of disease management, and improving long-term outcomes.
  • • Improvements in the accuracy of real-time continuous glucose monitoring (CGM) have allowed for the development of automated insulin delivery systems that can adjust insulin delivery based on CGM glucose input.
  • • The development of new drugs, such as ultrarapid-acting insulins that better mimic physiologic insulin secretion, may lead to improved postprandial glycemia. The advent of stable glucagon formulations may allow for development of dual-hormone closed-loop systems that could further improve glycemic regulation.

New technologies in type 1 diabetes

Intensive insulin therapy for the management of type 1 diabetes (T1D) was established as the standard of care based on the results of the Diabetes Control and Complication Trial (DCCT), which conclusively demonstrated the benefits of tight glycemic control. 1 However, those who received intensive insulin management were at increased risk for severe hypoglycemia, which can be acutely life threatening and can result in seizures, coma, or death. Based on DCCT and other data, the American Diabetes Association (ADA) recommends glycosylated hemoglobin (HbA1c) less than 7% in adults, and recently also in many children and adolescents, in order to decrease the risk of both macrovascular and microvascular complications. 2 To achieve these recommended glycemic targets, patients must monitor blood glucose multiple times a day, closely estimate carbohydrate intake to calculate appropriate meal coverage, and administer multiple doses of insulin, which can have varying effects based on several physiologic factors such as physical activity, illness, or stress. This program results in a significant burden of disease management. Recently published data from the T1D Exchange, which includes more than 22,000 children and adults in the United States, show that less than a quarter of patients with T1D are meeting HbA1c goals. 3 Diabetes technologies are being developed to help decrease disease burden and improve glycemic outcomes. In this article, the authors highlight diabetes technology and therapies including new insulin analogues, continuous glucose monitoring systems (CGM), continuous subcutaneous insulin infusion (insulin pump therapy), as well as automated insulin delivery (AID) systems that integrate CGM and insulin pump technology with mathematical algorithms that automatically adjust insulin delivery ( Box 1 ).

Box 1

Key definitions.

Real-time continuous glucose monitoring (CGM)Wearable technology that provides real-time continuous glucose measurements with the options of alerts for hyperglycemia, hypoglycemia, or projected glucose out of target ranges
Flash glucose monitoring (FGM)Glucose monitoring system in which data are stored in a wearable sensor and obtained by scanning the sensor with dedicated receiver or smartphone
Automated insulin delivery, artificial pancreas system, closed-loop system, bionic pancreasTerms that refer to an insulin delivery system that uses mathematical algorithms that can adjust insulin delivery based on CGM input
Threshold suspendAutomated insulin suspension when glucose level drops less than a specified threshold
Predictive low glucose suspendAutomated insulin suspension when glucose level is predicted to be less than a specified glucose threshold (eg, 70 mg/dL) in a specific period of time (eg, 30 min)
Hybrid-closed loop systemAn automated insulin delivery system that modulates insulin delivery but still requires quantitative announcement of carbohydrate intake by the user
Fully closed-loop systemAutomated insulin delivery not dependent on user input
Bihormonal (dual hormone) systemAn artificial pancreas technology that uses insulin plus an additional hormone (eg, glucagon) intended to achieve better glycemic control than possible with an insulin-only system

Glucose monitoring

Self-monitoring of blood glucose (SMBG) with finger-stick glucose (FSG) concentrations has become a key component of diabetes care. The ability to obtain a blood glucose measurement and adjust therapy accordingly is a mainstay of treatment to reach glucose targets and prevent hypoglycemia. Glucometer accuracy has increased throughout the years, but not all meters available on the market today meet standards set forth by the Food and Drug Administration (FDA) and International Organization for Standardization. 4 Identifying glucose trends and patterns based on SMBG to make insulin adjustments had been the standard of care set forth by the DCCT, and increased frequency of SMBG is associated with improved glycemic control. 5 Some newer glucometers are Bluetooth enabled and can pair with smartphone applications for patients to better track and identify patterns. 6 However, FSG has limitations in that they provide only an instantaneous snapshot in time of current glucose and do not provide information on glucose trends or direction of change.

CGM and FGM devices measure interstitial glucose and estimate plasma glucose every 5 to 15 minutes, depending on the system. Real-time CGM systems (Dexcom G6, Senseonics Eversense, Medtronic Guardian) actively transmit glucose information to a dedicated receiver, insulin pump, smartphone/watch, and to a cloud network if desired and can provide real-time information to the user regarding (1) rate of glucose change, (2) hyperglycemia and hypoglycemia based on individualized thresholds, and (3) impending hypoglycemia alarms based on glucose trends. The glucose measurements can also be shared by patients with others, such as family members, in real-time for an added degree of security. In the only currently available FGM system (Abbott Freestyle Libre), data are stored within the sensor and can be obtained by scanning the device with dedicated receiver or smartphone. Of note, the next-generation Freestyle Libre 2 CGM recently approved by the FDA is capable of “pushing” optional real-time threshold alerts to a receiver or smartphone. Both CGM and FGM devices can be used in blinded mode to record glucose data on the device for later analysis of glycemic patterns to assist health care professionals in making therapeutic decisions.

Externally worn CGM (Dexcom G6, Medtronic Guardian) and FGM (Abbott Freestyle Libre) devices measure interstitial glucose via a transcutaneous sensor, a filament placed in the subcutaneous tissue connected to an overlying transmitter. More recently a CGM with an implantable sensor system with an externally worn transmitter, the Senseonics Eversense, has been approved for 3 or 6 months of use before replacement in the United States and Europe, respectively. Some devices require regular calibration, with FSG input required at least twice daily (Medtronic Guardian and Senseonics Eversense), or are factory calibrated with no additional measurements required (Dexcom G6 and Abbott Freestyle Libre).

Data from CGM and FGM devices can be downloaded by clinicians and provide a standardized ambulatory glucose profile with information regarding percentage of time spent in hypo- and hyperglycemic ranges, time in target range, and glucose variability. Mean glucose as determined by CGM can be used to calculate the glucose management indicator, which provides an estimate of HbA1c 7 to help determine if patients are achieving target glucose goals. 8 In fact, because the relationship between HbA1c and average glucose can be modified by the mean red blood cell lifespan, mean CGM glucose may be a better predictor of long-term complications than HbA1c when the measured HbA1c and GMI are not in agreement. 7 Recently the ADA has published consensus guidelines regarding the recommended percentage of time in target range as well as hyper- and hypoglycemic targets for patients with T1D. 9 Time in target range of 70 to 180 mg/dL (TIR) has been shown to correlate with mean glucose and HbA1c. TIR of 70% correlates to an HbA1c of approximately 7%. TIR has been suggested as a new treatment standard based on the argument that TIR is easier for people with diabetes to understand and is more actionable on a day-to-day basis. 2 , 10 Targets for time below range (TBR) and time above range (TAR) have also been established ( Table 1 ).

Table 1

Continuous glucose monitoring recommendations for patients with type 1 diabetes to achieve HbA1c 7% a

Glycemic Target (mg/dL)% of CGM Readings
Time below range (TBR)<54<1%
<70<4%
Time in range (TIR)70–180>70%
Time above range (TAR)>180<25%
>250<5%

CGM accuracy has improved significantly since its inception, and many CGM devices have obtained approval for nonadjunctive use (Dexcom G6, Senseonics Eversense, Freestyle Libre), meaning that CGM data can be used as a replacement for FSG when making insulin-dosing decisions. 11 Studies have shown that CGM use is associated with improved HbA1c and a reduction in hypoglycemia. 12 , 13 More recently, the FDA has created an interoperable integrated continuous glucose monitoring system standard, which allows an approved CGM device to be used as part of an integrated system with other compatible medical devices and electronic interfaces, including insulin delivery systems. Approved systems (currently, the Dexcom G6 and the Freestyle Libre 2) meet accuracy and reliability standards set forth by the FDA, securely transmit glucose data to other devices, and may be used interchangeably with AID devices for the purpose of managing glycemia.

One of the major challenges to managing glycemia in patients with diabetes is the inability of currently available insulin formulations to mimic the kinetics and action of endogenous insulin secretion. 14 In individuals without diabetes, incretin-stimulated insulin release and a rapid hepatic exposure to insulin in response to a meal occur and lead to decreased hepatic glucose production. 15 This physiology is no longer intact in patients with T1D. Exogenous insulin administered in the subcutaneous tissue takes time to be absorbed in the systemic circulation. This delayed systemic delivery of exogenous insulin is a major physiologic difference with the immediate entry of endogenous insulin into the hepatic circulation for rapid effects. 16

Since the discovery of insulin in 1921, insulin therapy has greatly advanced from porcine and bovine insulin derivatives to the development of rapid-acting, and then ultrarapid-acting, insulin analogues. Older insulins such as Neutral Protamine Hagedorn and regular human insulin have a slow action of onset and long duration, which require patients to have rigid food consumption timing and routines to match the kinetics of insulin action. Rapid-acting insulin analogues (aspart, lispro, and glulisine) have a faster onset of action and quicker time to peak insulin action, which help better match postprandial glucose excursion. These rapid-acting insulins permit greater flexibility for patients: doses can be adjusted based on the timing and quantity of carbohydrates consumed rather. However, rapid-acting insulin analogues still require injection 10 to 15 minutes before meal intake for optimal action. 14

New ultrarapid-acting insulins have even faster on-off kinetics than rapid-acting insulin. 17 , 18 , 19 , 20 , 21 Faster aspart (also known as Fiasp) is currently FDA approved for adults and children with diabetes and uses nicotinamide as an excipient and l -arginine to increase stability. Ultrarapid lispro (URLi), which has recently completed a phase 3 trial, uses treprostinil to promote vasodilation and citrate as an excipient. 21 BioChaperone lispro, which uses BC222, an oligosaccharide modified with natural molecules and citrate as an excipient, is currently in development. Postprandial glucose were found to be lower with use of faster aspart in both pump and MDI delivery. 19 , 22 Overall rates of blood glucose–confirmed hypoglycemia and severe hypoglycemia have been reported to be similar between aspart and faster aspart. 19 Faster aspart is labeled for use to be administered up to 20 minutes after meal, which can provide further flexibility to patients. A trial of URLi in patients with T1D showed decreased postprandial glycemic excursions at 1 and 2 hours compared with lispro. 21 A short-term, cross-over trial comparing BioChaperone Lispro with insulin lispro has also shown decreases in early postprandial hyperglycemia. 20 In a head-to-head study, BioChaperone Lispro had slightly faster on-off kinetics than insulin lispro and may more closely mimic normal postprandial insulin secretion. 17 Inhaled insulin (Afrezza) is FDA approved and has much more rapid kinetics than injectable insulin delivered subcutaneously. Limitations in clinical use include lack of dose equivalency with injectable insulin and possible respiratory side effects including lung function decreases that are reversible on discontinuation. 23

Insulin delivery modalities

Multiple daily injection.

Insulin has been traditionally administered via MDI therapy via insulin syringe or insulin pen. Smart pen technology pairs the insulin pen with a smartphone to allow patients to more easily calculate and track insulin administration. The InPen (Companion Medical) is currently the only FDA-approved smart pen device, although others are in development. The InPen connects with a smartphone app via Bluetooth allowing patients to track insulin dosing history, calculate insulin doses, keep track of “insulin on board” (an estimate of rapid-acting insulin still in effect) and adjust calculated dosing accordingly, and set dosing reminders. 24 In addition, the phone application can also receive CGM data directly and in real time. Patients can export data collected from the application and share it with their health care team. Smart pen technology may have extra utility in certain patient populations or clinical scenarios, such as those who have difficulty remembering insulin dosing (eg, pediatric patients or those with cognitive or memory impairment) or those with limited health numeracy. 25 Accurate tracking of insulin dose administration is also of use to treatment teams to aid in insulin regimen adjustments. Further research is needed to determine clinical benefits of this technology, and other companies (including major insulin manufacturers) have announced plans to release smart pens in the future.

Insulin Pumps

Insulin pumps deliver a continuous infusion of insulin via a cannula placed in the subcutaneous tissue, sometimes referred to as continuous subcutaneous insulin infusion (CSII). Most of the pumps available use an infusion set with tubing to deliver insulin (in the United States, pumps from Tandem and Medtronic), but some systems known as patch pumps attach directly to the skin without the need for tubing (in the United States, the Insulet Omnipod system). Insulin pumps have programmable basal and bolus settings that can vary based on the time of the day. Insulin pumps track insulin usage and contain bolus calculators to assist in the calculation of meal-time insulin coverage and glucose correction. The pump also keeps track of “insulin on board” and adjusts calculated doses accordingly. The abilities to use different basal rates at different times of the day, to make temporary basal rate adjustments in response to glucose trend or activity level, and to deliver meal-time bolus insulin over extended periods of time based on user input are all unique to insulin pumps.

Patients can achieve target HbA1c goals with either MDI or insulin pump therapy, and extensive research has sought to determine if glycemic control with pump therapy is superior to that of MDI management. A systematic review and meta-analysis showed that both MDI and pump therapy resulted in comparable levels of glycemic control and incidence of severe hypoglycemia in children and adolescents with T1D and that pump therapy may have favorable effects on glycemic control in adults with T1D. 26 Insulin pump therapy is also associated with improved quality of life in both pediatric and adult populations. 27 , 28 By allowing varied basal rates, insulin pumps permit more flexible and physiologic insulin delivery that can be changed based on time of day and other factors such as exercise, as well as varied delivery of meal-time insulin bolus (eg, dual-wave or square-wave delivery set by the user) based on the type of food consumed. In addition, pump therapy eliminates the need for multiple daily injections of insulin, instead requiring only infusion set be changed every 2 to 3 days. Uptake of CSII has increased over the past decade, and currently nearly half of all patients with T1D in the United States manage their diabetes with pump therapy. 3

Automated Insulin Delivery

AID systems (also known as closed-loop, artificial pancreas, or bionic pancreas systems) use real-time glucose measurements fed into a control algorithm that automatically adjusts the rate of subcutaneous insulin delivery via an insulin pump ( Table 2 ). The earliest approved AID systems used threshold suspend, in which insulin delivery way automatically suspended when blood glucose level dropped less than a certain threshold. 29 Predictive glucose suspend improves on this feature by suspending insulin delivery when a hypoglycemic event is predicted in the future. Predictive low glucose suspend functionality decreases the percentage of time spent in hypoglycemic ranges in both the daytime and overnight. 30 By suspending insulin before a hypoglycemic event, this feature also reduces the duration of hypoglycemic events when they do occur.

Table 2

Current Food and Drug Administration–approved automated insulin delivery systems

MiniMed 530G (Medtronic)MiniMed 630G Pump (Medtronic)Basal-IQ System (Tandem)MiniMed 670G (Medtronic)Control IQ System (Tandem)
Threshold suspendPredictive low glucose suspendPredictive low glucose suspendHybrid-closed loopHybrid-closed loop

Later generation AID systems entail more complex algorithms to not only suspend insulin delivery based on hypoglycemia but continuously adjust insulin delivery in response to glycemic trends. The most advanced AID systems that are commercially available today are referred to as hybrid closed-loop systems. Patient input is still required to count carbohydrates and administer correction boluses, but the system will additionally modulate insulin delivery in the background, and in some systems deliver partial correction boluses, based on glycemic trends. Other systems that have been studied but are not yet available use qualitative meal announcements to estimate carbohydrate content, describing meals as “typical,” “more than typical,” “less than typical,” or “a small bite,” rather than requiring quantitative carbohydrate counting. 31

Currently available FDA-approved hybrid closed-loop systems include the Medtronic 670G and Tandem t:slim X2 with Control IQ. The first hybrid closed-loop system available in United States, the Medtronic 670G, was approved in 2017 for adult and pediatric patients as young as age 7 years. The approval relied on a nonrandomized study without a control arm. 32 The system can be used as a traditional pump or in “auto mode,” in which the pump automatically adjusts basal insulin rates up to every 5 minutes by increasing, decreasing, or suspending delivery of insulin based on CGM trends. Patients are still required to count carbohydrates and enter them into the system, and meal boluses are calculated based on a programmed carbohydrate ratio. As a safety feature, the system may exit auto mode and revert to preprogrammed delivery if insulin delivery approaches maximum or minimum insulin delivery thresholds, if POC and CGM readings are discrepant, or if CGM signal is lost. In a real-world, prospective observational study of 92 youth who started this system, 30% discontinued use of the auto mode within the first 6 months. Another real-world cohort study of 79 pediatric and adult patients reported that 33% discontinued auto mode use within 12 months. 33 , 34 Reasons cited included the number of alarms, challenges with requiring calibrations, and dissatisfaction with glycemic control. 34

The second hybrid closed-loop device in the United States, the Tandem t:slim X2 with Control-IQ using the Dexcom G6 as the input CGM, was approved in 2019 for adults and pediatric patients older than or equal to 6 years. In the 6-month, randomized, controlled pivotal trial of this device, participants were randomized to closed-loop control or usual diabetes care with sensor-augmented pump therapy. 35 Patients randomized to closed-loop control had improvements in target range, mean CGM glucose, and HbA1c, as well as reduced rates of hypoglycemia. Unlike the Medtronic 670G, Control-IQ only reverts to preprogrammed insulin delivery when CGM signal is lost and does not require finger-stick calibration to continue AID. Trials are underway evaluating this device in younger children ( NCT03844789 ).

Experimental Automated Insulin Delivery Systems

Several AID systems that rely on different sets of mathematical algorithms, including proportional integral derivative, fuzzy logic, and model predictive control algorithms, are in development. These AID systems have been associated with increased time in target glucose range (typically 70–180 mg/dL) and in some cases with decreased mean glucose, lower HbA1c, and decreased time in the hypoglycemic range. Pivotal trials for several of these AID systems are currently ongoing, including the Omnipod Horizon hybrid closed-loop system ( NCT04196140 ) and the Beta Bionics iLet Bionic Pancreas ( NCT04200313 ).

One class of AID systems, called bihormonal or dual hormone systems, is capable of delivering a second hormone to further improve glycemic control. Given the kinetics of subcutaneous insulin delivery, the reduction and/or suspension of insulin may be insufficient to prevent hypoglycemia, especially in certain scenarios that may result in changes in insulin sensitivity such as exercise. Several bihormonal systems use microdosing of glucagon to prevent and treat hypoglycemia when suspension of insulin delivery is not sufficient. Glucagon has rapid on and off kinetics, and the addition of glucagon can allow for more aggressive glucose targets compared with insulin-only systems by reducing the potential for hypoglycemia. In short-term studies of bihormonal systems, subjects achieved increased time in target range, lower mean glucose, and decreased rates of hypoglycemia compared with sensor-augmented pump therapy. 31 , 36 Additional studies comparing bihormonal with insulin-only closed-loop systems suggest that bihormonal systems may further improve mean glucose, time in range, as well as reduce the time spent in hypoglycemic ranges. 37

Other classes of dual hormone systems that have been studied administer pramlintide (an amylin analogue) or glucagon-like peptide-1 (GLP-1) receptor agonist in combination with insulin. 38 , 39 Amylin is cosecreted with insulin from pancreatic beta cells and helps moderate postprandial glucose excursions by slowing gastric emptying, inhibiting glucagon secretion, and promoting satiety. A recent study examining an automated system delivering fixed dose ratio of insulin and pramlintide found increase in time in range compared with the insulin-only system. 38 Long-term studies of bihormonal systems are needed to establish their potential benefits.

A recent meta-analysis 37 reviewed published studies of artificial pancreas systems including insulin-only and dual hormone systems delivering glucagon in more than 500 adult and pediatric subjects with T1D. Most of these trials were small and for a short duration, but the analyses showed that AID systems achieved higher TIR compared with conventional pump therapy and that dual hormone systems resulted in greater improvements in TIR than insulin-only systems. Both classes of AID systems deliver improved glycemia overnight, which is a substantial benefit to patients, as fear of nocturnal hypoglycemia is a primary concern for patients and families. 37 , 40

Challenges to Fully Automated Insulin Delivery

One the main challenges to achieving fully automated closed-loop insulin delivery is overcoming the kinetics of nonphysiologic subcutaneous insulin administration related to postprandial glucose excursions. Given the kinetics of subcutaneous insulin delivery, increased insulin dosing that occurs only after the glucose excursion has begun may lead to prolonged hyperglycemia. Furthermore, because of variations in physiologic insulin needs and the kinetics of current insulin formulations, increased insulin delivery can result in late hypoglycemia. Exercise can compound these challenges by altering insulin sensitivity and increasing insulin-independent glucose uptake into muscles. Several approaches have been studied to ameliorate this issue. Adjunctive therapies including pramlintide (an amylin analogue), GLP-1 receptor agonists, dipeptidyl peptidase-4 inhibitors, and sodium–glucose cotransporter 2 inhibitors have all been studied in patients with T1D with the goal of decreasing postprandial glycemic excursions and reducing the need for aggressive insulin dosing. 41 Alternate approaches to insulin delivery, such as delivery of insulin directly to intraperitoneal space, enable faster pharmacokinetics/pharmacodynamics than subcutaneous insulin delivery. 42 Studies examining the utility of new ultrarapid-acting insulins in AID systems have suggested decreased glycemic variability with these newer insulin analogues. 43

Data management and telehealth

Technology including CGM, smartphones, smartwatches, and activity trackers generate large amounts of high-density data that can be difficult for clinicians to synthesize in the limited time available during visits. At present, SMBG, CGM, and pump data can be downloaded to review for patterns and make adjustments in treatment. Currently available software allows patients to download their pump and CGM at home and then share these data via cloud-based services with the patient’s clinical team to review, potentially allowing for more frequent patient contact between in-person visits. With advancement of artificial intelligence and machine learning, these data could be analyzed for automated generation of recommendations for therapy adjustment. Software systems have been developed to automatically generate insulin dose decision support recommendations. 44

The prevalence of technology at home and in clinics has led to great interest in telehealth—a broad term used to describe health care delivery with the aid of technology, which includes video visits, web-based portals, or text messaging. Telehealth has been applied across multiple specialties and conditions and can be used to conduct remote patient visits and patient education and behavioral management sessions. Telehealth strategies can help increase access to health care and reduce barriers to reaching providers, especially in resource limited settings or for those living far from treatment facilities. A recent meta-analysis found that telehealth intervention in patients with diabetes led to HbA1c improvements. 45 Concerns about spread of SARS-CoV-2 have dramatically increased use of telehealth visits for diabetic patients over a very short period of time in the first quarter of 2020 and will likely accelerate the movement of diabetes management visits to virtual formats.

Availability of data in the cloud has allowed companies to publish “real world” studies describing glycemic control in patients using their technologies. 46 The development of virtual diabetes clinics is likely on the horizon, as patient data are obtained from wearable devices including CGM and insulin pumps and then transmitted into the electronic health record for analysis with machine learning and decision support. 47

Diabetes technology holds promise for improving glycemic outcomes and decreasing burden of disease for patients and families with T1D. Rapid advancement of diabetes therapeutics and technologies have enhanced diabetes monitoring and insulin delivery capabilities. Devices that partially automate insulin delivery improve glycemic control, and more capable automated closed-loop systems will likely be available in the near future. Further research should determine the long-term benefits of these devices on glycemic control and quality of life in T1D.

J.S. Sherwood has nothing to disclose. S.J. Russell has patents and patents pending on aspects of the bionic pancreas that are assigned to Massachusetts General Hospital and are licensed to Beta Bionics, has received honoraria and/or travel expenses for lectures from Novo Nordisk, Roche, and Ascensia, serves on the scientific advisory boards of Unomedical and Companion Medical, has received consulting fees from Beta Bionics, Novo Nordisk, Senseonics, and Flexion Therapeutics, has received grant support from Zealand Pharma, Novo Nordisk, and Beta Bionics, and has received in-kind support in the form of technical support and/or donation of materials from Zealand Pharma, Ascencia, Senseonics, Adocia, and Tandem Diabetes. M.S. Putman has nothing to disclose.

Breakthrough research unveils β-cell dynamics in Type 1 diabetes

  • Download PDF Copy

About eight million people live with Type 1 diabetes (T1D) worldwide, a chronic autoimmune condition in which the body attacks and destroys its own insulin-producing β-cells (pronounced "beta") in the pancreas, leading to a lack of insulin and inability to regulate blood sugar. It's not known why the body suddenly perceives its own β-cells as the enemy; some lines of evidence suggest environmental factors such as viral infections may trigger the onset of T1D, others suggest genetics may also play some role. 

Groundbreaking research by investigators at Joslin Diabetes Center sheds new light on the specific changes β-cells go through at the onset of T1D. Their findings-;published in Nature Cell Biology -;offer new avenues for targeted interventions for the chronic autoimmune condition. 

In the field of Type 1 diabetes, research has largely focused on understanding the immune component, but our study argues that the β-cell is a significant player. Our findings suggest that the β-cell could be initiating key events which then promote the autoimmune mechanism to go awry. It's a paradigm shifting approach."  Rohit N. Kulkarni, M.D., Ph.D., Margaret A. Congleton Chair and Co-Head of the Section on Islet & Regenerative Biology at Joslin Diabetes Center

In a series of experiments with β-cells taken from a mouse model of T1D, as well as from humans with established T1D, Kulkarni and colleagues teased out the complex cascade of biochemical steps called a signaling pathway that controls the innate immune response at the onset of T1D. The team identified one pathway that influences the immune characteristics of β-cells, acting like control switches that identify them as friend or foe to the body. These control switches can be imagined as tiny tags. One specific tag the investigators focused on-;called N6-methyladenosine (m6A)-;plays a vital role in the response of β-cells during T1D onset. By adjusting these control switches, the researchers were able to influence the levels of a crucial protein along this pathway, leading to a notable delay in the progression of the disease in a mouse model of T1D. 

Dario F. De Jesus MSc, Ph.D., lead author of the study and Research Associate in the Kulkarni Lab, identified the key enzyme METTL3 as crucial for regulating β-cell antiviral defenses. In the late stages of T1D, when METTL3 levels were low, it hinted that higher METTL3 levels shield β-cells from dysfunction. By enhancing METTL3 production in the mouse model, the team successfully delayed progression of disease. 

"This discovery suggests that interventions to boost METTL3 levels is a potential strategy to protect β-cells and slow down progression of Type 1 diabetes," emphasized De Jesus, who is also an Instructor in Medicine at Harvard Medical School. 

Related Stories

  • Study reveals bidirectional relationship between diabetes complications and mental health disorders
  • New test detects cancer risk in type 2 diabetes patients
  • Stem cell study identifies unique glial contributions to multiple sclerosis

Taken together, these several lines of evidence paint a clearer picture of the immune events surrounding the still mysterious onset of T1D, including a novel mechanism that could be harnessed for β-cell protection. They also demonstrated that the enzyme METTL3 has the potential to promote β-cell survival and function during disease progression. 

"It is notable that this pathway has commercially available compounds that have been used in the context of other diseases," said Kulkarni, who is also a professor of medicine at Harvard Medical School. "While it's a different target, it's an approach which has been shown to work. Among our next steps, we will focus on identifying specific molecules and pathways that can be harnessed to enhance protection of the β-cell." 

Co-authors included Natalie K. Brown, Ling Xiao, Jiang Hu, Garrett Fogarty, Sevim Kahraman and Giorgio Basile of Joslin Diabetes Center; Zijie Zhang, Jiangbo Wei and Chuan He of the University of Chicago; Xiaolu Li, Wei-Jun Qian and Matthew J. Gaffrey of Pacific Northwest National Laboratory; Tariq M. Rana of University of California, San Diego; Clayton Mathews and Mark A. Atkinson of the University of Florida College of Medicine; Alvin C. Powers of the Vanderbilt University Medical Center; Audrey V. Parent of University of California, San Francisco; Sirano Dhe-Paganon of Harvard Medical School; and Decio L. Eizirik of Université Libre de Bruxelles. 

This work is supported by the National Institutes of Health (grants R01 DK67536, UC4 DK116278, RM1 HG008935, and R01 DK122160). Portions of the mass spectrometry work were performed in the Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, a national scientific user facility sponsored by the Department of Energy under Contract DE AC05-76RL0 1830. R.N.K. acknowledges support from the Margaret A. Congleton Endowed Chair and C.H. is a Howard Hughes Medical Institute Investigator. DFDJ acknowledges support from Mary K Iacocca Junior Postdoctoral Fellowship, American Diabetes Association (grant #7-21-PDF-140, and NIH K99 DK135927). 

Joslin Diabetes Center

F. De Jesus, D., et al. (2024). Redox regulation of m6A methyltransferase METTL3 in β-cells controls the innate immune response in type 1 diabetes.  Nature Cell Biology . doi.org/10.1038/s41556-024-01368-0 .

Posted in: Medical Science News | Medical Research News | Medical Condition News

Tags: Blood , Blood Sugar , Cell , Cell Biology , Chronic , Diabetes , Education , Enzyme , Genetics , Health Care , Immune Response , Insulin , Laboratory , Mass Spectrometry , Medical School , Medicine , Mouse Model , Pancreas , pH , Protein , Research , Signaling Pathway , Spectrometry , Type 1 Diabetes

Suggested Reading

ADA and Abbott join forces to address nutritional needs in diabetes and obesity

Cancel reply to comment

  • Trending Stories
  • Latest Interviews
  • Top Health Articles

New report reveals the truth behind plant-based protein alternatives

Global and Local Efforts to Take Action Against Hepatitis

Lindsey Hiebert and James Amugsi

In this interview, we explore global and local efforts to combat viral hepatitis with Lindsey Hiebert, Deputy Director of the Coalition for Global Hepatitis Elimination (CGHE), and James Amugsi, a Mandela Washington Fellow and Physician Assistant at Sandema Hospital in Ghana. Together, they provide valuable insights into the challenges, successes, and the importance of partnerships in the fight against hepatitis.

Global and Local Efforts to Take Action Against Hepatitis

Addressing Important Cardiac Biology Questions with Shotgun Top-Down Proteomics

In this interview conducted at Pittcon 2024, we spoke to Professor John Yates about capturing cardiomyocyte cell-to-cell heterogeneity via shotgun top-down proteomics.

Addressing Important Cardiac Biology Questions with Shotgun Top-Down Proteomics

A Discussion with Hologic’s Tim Simpson on the Future of Cervical Cancer Screening

Tim Simpson

Hologic’s Tim Simpson Discusses the Future of Cervical Cancer Screening.

A Discussion with Hologic’s Tim Simpson on the Future of Cervical Cancer Screening

Latest News

Distinct waves of T cells generated by each dose of combination immunotherapy

Newsletters you may be interested in

Diabetes

Your AI Powered Scientific Assistant

Hi, I'm Azthena, you can trust me to find commercial scientific answers from News-Medical.net.

A few things you need to know before we start. Please read and accept to continue.

  • Use of “Azthena” is subject to the terms and conditions of use as set out by OpenAI .
  • Content provided on any AZoNetwork sites are subject to the site Terms & Conditions and Privacy Policy .
  • Large Language Models can make mistakes. Consider checking important information.

Great. Ask your question.

Azthena may occasionally provide inaccurate responses. Read the full terms .

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions .

Provide Feedback

new research on diabetes type 1

Talk to us about diabetes

0345 123 2399

customer support

Sleep duration in type 2 and tackling the type 1 immune attack: Research Highlights August 2024

Diabetes UK shares the biggest diabetes research stories of 2020

In this series we take a look at some of the exciting diabetes research developments announced recently, and what the findings could mean for people living with or affected by diabetes. 

Psoriasis medication might help to stop the type 1 immune attack

Immunotherapies have the potential to transform how we treat type 1 diabetes  by tackling its root cause for the first time and moving us closer to preventing and curing the condition.

Right now, our researchers are developing and testing several different types of immunotherapies for type 1 diabetes. These work in different ways, but all are designed to stop the immune system from attacking insulin-making beta cells in the pancreas.

The findings of a recent study suggest that an immunotherapy medication currently used to treat the skin condition psoriasis, called Ustekinumab, might also be beneficial for type 1 diabetes by helping to shield insulin-making beta cells from the immune system attack.

Researchers at Cardiff, King’s College London, Swansea, and the University of Calgary tested Ustekinumab in adolescents aged between 12 and 18 years who were newly diagnosed with type 1 diabetes.

Forty-one participants received the drug and 21 in the control group took a placebo. After 12 months, C-peptide levels, a marker of insulin production, were found to be 49% higher in the group who received Ustekinumab than C-peptide levels in the control group. The increase in insulin production in the Ustekinumab group was linked to a decrease in the number of destructive immune cells.

Ustekinumab was found to be safe and tolerated by the participants, although it needs to be tested in larger groups of people who differ in age and stages of type 1 diabetes in further trials. 

How tiny blood vessels are impacted by sleep duration in type 2 diabetes  

Diabetes can cause complications on a tiny scale which can have a very big impact. These ‘microvascular’ complications, like retinopathy , which affects the eyes, result from damage to small blood vessels. This damage can harm larger blood vessels, and lead to the development of macrovascular complications, like coronary artery disease or stroke.  

A growing body of evidence suggests that the risk of developing these diabetes-related complications is influenced by sleep quantity and quality. Now researchers in Denmark have showed that, in people living with type 2 diabetes , getting too little or too much sleep is linked to an increased risk of damage to small blood vessels.

The team explored whether sleep duration is linked to microvascular damage in 396 people newly diagnosed with type 2 diabetes. They classified sleep duration into three categories: short (less than 7 hours), optimal (between 7-9 hours), and long (9 hours or more), and identified those with microvascular damage by assessing specific markers in the blood and by the presence of retinopathy.

The researchers found that the proportion of people with microvascular damage was 38%, 18%, and 31% for short, optimal, and long sleep duration groups respectively. Short sleep duration was linked with a 2.6-fold increased risk of microvascular damage compared with optimal sleep duration. Similarly, long sleep duration was linked to a 2.3-fold elevated risk compared to optimal sleep duration.  

The risk of microvascular damage was particularly heightened in older people who didn’t get enough sleep. Participants aged 62 years and over who slept less than seven hours had a 5.7 times increased risk of small blood vessel damage compared to people the same age in the optimal sleep duration group.  This finding suggests that older individuals with type 2 diabetes who habitually sleep less than seven hours a night may be more vulnerable to diabetes complications.

These findings will be presented at the Annual Meeting of the European Association for the Study of Diabetes (EASD) in September.

The unique pieces in the puzzle of diabetes distress 

Diabetes distress is what people feel when they are overwhelmed by the relentlessness of living with diabetes. Diabetes distress can make it much harder to manage the condition which in turn can increase the risk of diabetes complications. 

We need to understand what drives diabetes distress and how to alleviate it. While technology to track blood sugars in real-time (continuous glucose monitoring or CGM) can help with daily diabetes management, not much is known about if CGM adds to or reduces diabetes distress. 

A research team from Germany has recently investigated if diabetes distress is most influenced by what people perceive their blood sugars to be or by actual CGM readings. They conducted an observational study over 17 days on 379 participants with type 1 diabetes or type 2 diabetes.

They combined data collected using an app with CGM data to map links between blood sugars and diabetes distress. The app gathered people’s perceptions of their blood sugars (the extent to which they felt burdened by low, high, and fluctuations in their blood sugars) and CGM-recorded blood sugar data. Participants were followed up three months later.

Overall, findings showed that how people perceived their blood sugars was more influential on diabetes distress than blood sugar data collected by CGM.

Those whose distress was mostly linked to their perception of their blood sugars also reported poorer mental health at the three-month follow up. Whereas individuals whose distress was more strongly driven by their CGM-collected data had better mental health at three months. However, the researchers found there were a lot of differences in how people responded to perceived and CGM-collected blood sugar levels. 

These varying results crucially highlight the need to further understand the complex drivers of diabetes distress and that the experience of diabetes distress is unique for each person.By increasing this knowledge, personalised treatment strategies can be developed.

Clarity in a sea of mixed results: gestational diabetes & breast cancer 

Gestational diabetes occurs when pregnancy hormones make the body less sensitive to insulin. This is known as insulin resistance and results in high blood sugar levels.

Insulin resistance has also been linked to breast cancer. However, whether gestational diabetes increases the risk of breast cancer is contested in the research world, with some studies suggesting that it increases the risk while others that it decreases the risk. 

In one of the largest studies to date on gestational diabetes and breast cancer, researchers from Denmark looked at data over a 22-year period on over 700,000 women who gave birth in Denmark. The researchers studied the women for nearly 12 years. Findings showed that 24,140 women developed gestational diabetes in one or more pregnancies and 7,609 women were diagnosed with breast cancer.

This study concluded that women who had gestational diabetes were no more likely to develop breast cancer than those without gestational diabetes. This was the case across all cancer categories: breast cancer overall, premenopausal breast cancer, and postmenopausal breast cancer. 

Despite this, Dr Christensen urged women with gestational diabetes to remain vigilant:

"(They) need to be alert to the fact that they are at higher risk of some conditions, including type 2 diabetes. And all women, regardless of whether or not they have had gestational diabetes, should be breast aware and check their breasts regularly for changes."

It’s important to note that the study population were predominantly Caucasian so now we need further research into other populations and healthcare systems.

Share this Page

Facebook

© The British Diabetic Association operating as Diabetes UK, a   charity registered in England and Wales (no. 215199) and in Scotland (no. SC039136). A company limited by guarantee registered in England and Wales with (no.00339181) and registered office at Wells Lawrence House, 126 Back Church Lane London E1 1FH

Fundraising regulator logo

Eating Red And Processed Meat—And Even Chicken—Could Increase Risk Of Diabetes, Research Finds

  • Share to Facebook
  • Share to Twitter
  • Share to Linkedin

Consuming meat, particularly red and processed meat, and even poultry like chicken and turkey may increase the risk of developing type 2 diabetes in the future, according to a new study published on Tuesday, adding to growing evidence linking meat and ultra-processed foods to health issues including heart disease, cancer, depression, anxiety and even premature death.

Red meat is associated with a higher risk of type 2 diabetes, researchers found.

Consuming processed meat and unprocessed red meat regularly is associated with a higher risk of developing type 2 diabetes, according to peer reviewed published in The Lancet Diabetes and Endocrinology medical journal.

While previous research has indicated eating more processed meat and unprocessed red meat is linked to a higher risk of type 2 diabetes, the researchers said results have been inconclusive and variable, which has led to confusing and often polarizing debates over whether the foods are safe to eat and, if so, in what quantities.

To assess the link between meat and the risk of type 2 diabetes, the team, led by researchers at the University of Cambridge, analyzed existing data from nearly 2 million people across 31 study groups in 20 countries to see whether their eating habits were associated with a risk of type 2 diabetes when accounting for other factors like age, gender, energy intake, body mass index and health-related behaviors.

Habitually eating 50 grams of processed meat a day—roughly equivalent to two slices of ham—was associated with a 15% higher risk of developing type 2 diabetes in the next 10 years, the researchers found, and consuming 100 grams of unprocessed red meat a day—the equivalent of a small steak—was associated with a 10% higher risk.

Nita Forouhi, a professor of population health and nutrition at the University of Cambridge and a senior author on the paper, said the research “provides the most comprehensive evidence to date” of a link between eating red and processed meat and a higher future risk of type 2 diabetes.

“It supports recommendations to limit the consumption of processed meat and unprocessed red meat to reduce type 2 diabetes cases in the population,” added Forouhi.

Is It Safe To Eat Other Meat Like Chicken And Turkey?

Poultry such as chicken, turkey and duck is often touted as a healthier protein source to red and processed meats. The idea is supported by research, which indicates lower risks for many of the health issues linked to red and processed meat consumption like cancer , heart disease and diabetes , but the issue is a comparative one and it does not mean eating poultry is without risk. Research increasingly indicates regular poultry meat consumption is linked to harmful health effects like gastro-oesophageal reflux disease, gallbladder disease and diabetes. Research on this association is more limited, the researchers noted, taking the opportunity to investigate the potential link as well. They found habitual consumption of 100 grams of poultry a day was associated with an 8% higher risk of developing type 2 diabetes over the next 10 years. However, Forouhi warned the evidence linking poultry consumption and diabetes was much weaker than that for red and processed meat when subjected to further analytical scrutiny. “While our findings provide more comprehensive evidence on the association between poultry consumption and type 2 diabetes than was previously available, the link remains uncertain and needs to be investigated further,” Forouhi said.

Surprising Fact

While often considered a “white meat” alongside poultry like chicken, experts and regulators say pork is a “red meat” like beef, veal and lamb. The U.S. Department of Agriculture says the distinction is determined by the amount of the oxygen-carrying protein myoglobin is in the meat, which determines the color of the meat. Pork is considered red meat because it contains more myoglobin than chicken or fish.

What To Watch For

Growing evidence on the negative health associations of eating different meats has ignited campaigns to limit the consumption of red and processed meat, and sometimes meat in general, as a matter of public health and to reduce the burden of diseases like diabetes. In recent years, this health-driven messaging has been joined by a more climate-focused approach, urging people to limit meat consumption as part of reducing their carbon footprint and tackling the climate crisis. Research has also increasingly identified potential health problems like heart disease and early death linked to ultraprocessed foods, including plant-based ultraprocessed foods .

What We Don’t Know

Most research between food consumption and various health risks are observational in nature. This means causal relationships are very hard to determine. More research—much of which would be difficult or impossible to conduct in humans—is needed to establish causal claims like reducing red meat intake will reduce the risk of developing diabetes.

Get Forbes Breaking News Text Alerts: We’re launching text message alerts so you'll always know the biggest stories shaping the day’s headlines. Text “Alerts” to (201) 335-0739 or sign up here .

Further Reading

Robert Hart

  • Editorial Standards
  • Reprints & Permissions

Join The Conversation

One Community. Many Voices. Create a free account to share your thoughts. 

Forbes Community Guidelines

Our community is about connecting people through open and thoughtful conversations. We want our readers to share their views and exchange ideas and facts in a safe space.

In order to do so, please follow the posting rules in our site's  Terms of Service.   We've summarized some of those key rules below. Simply put, keep it civil.

Your post will be rejected if we notice that it seems to contain:

  • False or intentionally out-of-context or misleading information
  • Insults, profanity, incoherent, obscene or inflammatory language or threats of any kind
  • Attacks on the identity of other commenters or the article's author
  • Content that otherwise violates our site's  terms.

User accounts will be blocked if we notice or believe that users are engaged in:

  • Continuous attempts to re-post comments that have been previously moderated/rejected
  • Racist, sexist, homophobic or other discriminatory comments
  • Attempts or tactics that put the site security at risk
  • Actions that otherwise violate our site's  terms.

So, how can you be a power user?

  • Stay on topic and share your insights
  • Feel free to be clear and thoughtful to get your point across
  • ‘Like’ or ‘Dislike’ to show your point of view.
  • Protect your community.
  • Use the report tool to alert us when someone breaks the rules.

Thanks for reading our community guidelines. Please read the full list of posting rules found in our site's  Terms of Service.

  • Alzheimer's disease & dementia
  • Arthritis & Rheumatism
  • Attention deficit disorders
  • Autism spectrum disorders
  • Biomedical technology
  • Diseases, Conditions, Syndromes
  • Endocrinology & Metabolism
  • Gastroenterology
  • Gerontology & Geriatrics
  • Health informatics
  • Inflammatory disorders
  • Medical economics
  • Medical research
  • Medications
  • Neuroscience
  • Obstetrics & gynaecology
  • Oncology & Cancer
  • Ophthalmology
  • Overweight & Obesity
  • Parkinson's & Movement disorders
  • Psychology & Psychiatry
  • Radiology & Imaging
  • Sleep disorders
  • Sports medicine & Kinesiology
  • Vaccination
  • Breast cancer
  • Cardiovascular disease
  • Chronic obstructive pulmonary disease
  • Colon cancer
  • Coronary artery disease
  • Heart attack
  • Heart disease
  • High blood pressure
  • Kidney disease
  • Lung cancer
  • Multiple sclerosis
  • Myocardial infarction
  • Ovarian cancer
  • Post traumatic stress disorder
  • Rheumatoid arthritis
  • Schizophrenia
  • Skin cancer
  • Type 2 diabetes
  • Full List »

share this!

August 29, 2024

This article has been reviewed according to Science X's editorial process and policies . Editors have highlighted the following attributes while ensuring the content's credibility:

fact-checked

Does low lipoprotein(a) increase the risk of diabetes? New research suggests it does not

by Polskie Towarzystwo Lipidologiczne (Polish Lipid Association)

diabetes

New research has shown that, contrary to some previous studies, low levels of lipoprotein (a)—a parcel of fats and protein in the blood—do not cause type 2 diabetes.

The findings may alleviate concerns that drugs aimed at reducing lipoprotein (a) [known as Lp(a)] might be increasing patients' risk of diabetes. High levels of Lp(a) are known to increase the risk of a range of cardiovascular diseases, such as clogged arteries, heart attack and stroke, and so doctors usually try to reduce Lp(a) but may be worried about a possible link with diabetes.

In a study presented by Professor Tadeusz Osadnik from Medical University of Silesia in Katowice, Poland, at the ESC Congress today and published simultaneously in Cardiovascular Diabetology , researchers have used a genetic method called Mendelian randomization (MR) to show that, in fact, it is high levels of fasting insulin (hyperinsulinemia) that cause the reduction in Lp(a). Hyperinsulinemia leads to the development of pre-diabetes and type 2 diabetes.

Prof. Osadnik told the Congress, "Our findings suggest that hyperinsulinemia, triggered by insulin resistance, can partially explain the inverse relationship between low Lp(a) concentrations and an increased risk of type 2 diabetes. They show that insulin produced by the body has a slight tendency to reduce levels of Lp(a)."

Prof. Osadnik and Maciej Banach, Professor of Cardiology at the Medial University of Lodz, Poland, and Johns Hopkins University School of Medicine, Baltimore, U.S., published a study earlier this year that used MR to show there was no correlation between genetically predicted Lp(a) concentrations on the incidence of type 2 diabetes. However, they wanted to investigate further as there was some evidence that other factors might be involved.

MR is a method that uses measured variations in inherited genes to see if a particular risk factor [such as low Lp(a)] causes an effect on health (in this case, hyperinsulinemia), rather than just being associated with it, and reduces the likelihood of reverse causation.

The researchers used information from UK Biobank to identify genetic variants, called single-nucleotide polymorphisms or SNPs, that were strongly associated with fasting insulin levels. They conducted several statistical analyses to understand the relationship between the SNPs and fasting insulin.

Prof. Banach, who was also at the ESC Congress, said, "Our analyses show that higher genetically predicted fasting insulin levels cause a decrease in Lp(a) concentration, and there is no evidence of reverse causality, in which it would be the other way round.

"The question now is whether these observations may have any important clinical relevance? First, we can confirm that the relationship between Lp(a) and diabetes exists, but Lp(a) is unlikely to be a risk factor for the development of diabetes, independent of pre-existing hyperinsulinemia and insulin resistance. Second, the observational relationship between low Lp(a) and diabetes risk may not translate to possible adverse effects of therapies that reduce Lp(a) levels. More research is needed to investigate this further."

Prof. Osadnik said, "Although therapies aimed at reducing insulin resistance , high levels of insulin in the blood and high blood sugar levels may increase Lp(a), it is almost certain that their cardiometabolic benefits outweigh the increased cardiovascular risk caused by an increase in Lp(a). This is demonstrated by the fact that good control of blood sugar levels improves patient survival. As elevated Lp(a) is an independent and incremental risk factor for outcomes for patients with coronary artery disease , with and without diabetes, we should do our best to reduce elevated Lp(a)."

Prof. Banach concluded, "This study also clearly shows that our patients can be complicated, and often have other concurrent risk factors and medical conditions. We should always take a holistic approach to their health, looking at all these other factors as well. We should not be focused just on Lp(a), or cholesterol levels or diabetes, but try to identify all other residual cardiovascular risk factors. We need to look at the whole patient; this is the only way to reduce cardiovascular disease effectively in our patients."

Limitations of the study include: it relied on summary data from UK Biobank and so it was not possible to analyze the influence of non-genetic factors that might affect Lp(a), such as sex, hormones or diet; bias may have been introduced because it included patients with diabetes ; the data came from people of European descent, so it might not be possible to generalize the findings to people of different ethnicities; and insulin and blood sugar levels are complex and interconnected, so further research is required to understand if indirect effects of insulin on Lp(a) levels exist.

Presenter: Tadeusz Osadnik (Medical University of Silesia in Katowice—Zabrze, Poland) .

Explore further

Feedback to editors

new research on diabetes type 1

High-resolution brain tumor mapping reveals possible reason why some patients don't respond to new drug

new research on diabetes type 1

Identifying key markers in pancreatic cancer progression using a new analysis pipeline

new research on diabetes type 1

Combo immunotherapy produces distinct waves of cancer-fighting T cells with each dose

2 hours ago

new research on diabetes type 1

Gene therapy gets a turbo boost from researchers

3 hours ago

new research on diabetes type 1

Mechanical stress in the borderzone: A new source of cardiac inflammation

new research on diabetes type 1

Clinical trial assesses the efficacy of suvorexant in reducing delirium in older adults

new research on diabetes type 1

Brain study suggests regions that grew the most during evolution are most susceptible to aging

new research on diabetes type 1

VR headsets could be life changing for people with intellectual disability

new research on diabetes type 1

Scientists discover how the body's killer cells attack cancer

new research on diabetes type 1

Crucial role of JUN protein in restraining liver cancer growth discovered

Related stories.

new research on diabetes type 1

Study suggests insulin receptor genetic variants may protect from type 2 diabetes

Jul 12, 2022

new research on diabetes type 1

Genetic links between migraine and blood sugar levels confirmed

Feb 23, 2023

Statins linked to higher diabetes risk

Mar 6, 2019

new research on diabetes type 1

Study finds increased body and abdominal fat cause insulin resistance in teenagers, raising type 2 diabetes risk

Jan 15, 2024

new research on diabetes type 1

Risk of stroke increases with insulin resistance, study suggests

Sep 27, 2021

new research on diabetes type 1

Eating before 8:30 a.m. could reduce risk factors for type 2 diabetes

Mar 18, 2021

Recommended for you

new research on diabetes type 1

Certain diabetes drugs may reduce risk of dementia, Korean study reveals

19 hours ago

new research on diabetes type 1

New diabetes research links blood glucose levels and voice pitch

Aug 28, 2024

new research on diabetes type 1

Team develops injectable heart stimulator for emergency situations

Aug 27, 2024

new research on diabetes type 1

Demystifying the targeted removal of red blood cells

new research on diabetes type 1

Research team discovers how Copaxone protects the heart muscle and improves its function after heart attack

Aug 26, 2024

Let us know if there is a problem with our content

Use this form if you have come across a typo, inaccuracy or would like to send an edit request for the content on this page. For general inquiries, please use our contact form . For general feedback, use the public comments section below (please adhere to guidelines ).

Please select the most appropriate category to facilitate processing of your request

Thank you for taking time to provide your feedback to the editors.

Your feedback is important to us. However, we do not guarantee individual replies due to the high volume of messages.

E-mail the story

Your email address is used only to let the recipient know who sent the email. Neither your address nor the recipient's address will be used for any other purpose. The information you enter will appear in your e-mail message and is not retained by Medical Xpress in any form.

Newsletter sign up

Get weekly and/or daily updates delivered to your inbox. You can unsubscribe at any time and we'll never share your details to third parties.

More information Privacy policy

Donate and enjoy an ad-free experience

We keep our content available to everyone. Consider supporting Science X's mission by getting a premium account.

E-mail newsletter

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • View all journals
  • Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts

Type 1 diabetes articles within Nature Reviews Endocrinology

Research Highlight | 02 August 2024

Combination therapy increases human β-cell mass in vivo

  • Olivia Tysoe

Review Article | 18 June 2024

The relationship between SARS-CoV-2 infection and type 1 diabetes mellitus

Many studies identified an increase in the incidence of type 1 diabetes mellitus (T1DM) during the COVID-19 pandemic, but other reports do not support this association. This Review addresses the issue of the involvement of SARS-CoV-2 infection in the development of T1DM using evidence from epidemiological, clinical and experimental studies.

  • Cyril Debuysschere
  • , Magloire Pandoua Nekoua
  •  &  Didier Hober

Correspondence | 21 March 2024

Reply to ‘Slowly progressive insulin dependent diabetes mellitus in type 1 diabetes endotype 2’

  • Maria J. Redondo
  •  &  Noel G. Morgan

Slowly progressive insulin-dependent diabetes mellitus in type 1 diabetes endotype 2

  • Tetsuro Kobayashi
  •  &  Takashi Kadowaki

Year in Review | 06 December 2023

Type 1 diabetes mellitus: a brave new world

One hundred years after the Nobel prize was bestowed on Banting and McLeod for the ‘discovery’ of insulin, we are again seeing major evolutions in the management of type 1 diabetes mellitus, with the prospect of achieving disease control beyond mere management now becoming real. Here, we discuss the latest, most notable developments.

  • Pieter-Jan Martens
  •  &  Chantal Mathieu

Research Highlight | 24 November 2023

β-cells protected from T1DM by early senescence programme

Research Highlight | 26 October 2023

Antivirals in the treatment of new-onset T1DM

  • Claire Greenhill

Review Article | 19 June 2023

Heterogeneity and endotypes in type 1 diabetes mellitus

There is a growing awareness that type 1 diabetes mellitus (T1DM) is a heterogeneous disease that can be characterized into distinct endotypes. This Review discusses the evidence for endotypes in T1DM and explores the implications for clinical practice.

Research Highlight | 07 June 2023

Differences in stem cell-derived islets

Perspective | 22 May 2023

Insulin detection in diabetes mellitus: challenges and new prospects

An urgent need exists for technologies and devices capable of frequent and real-time insulin measurements in patients with diabetes mellitus to guide optimal insulin dosing. This Perspective discusses the advances and challenges in moving insulin assays from laboratory-based assays to frequent and continuous measurements in decentralized settings.

  • , Ponnusamy Nandhakumar
  •  &  Joseph Wang

Clinical Outlook | 18 May 2023

Approval of teplizumab: implications for patients

Type 1 diabetes mellitus (T1DM) can be predicted, and immune therapy can alter the progression of the disease. The FDA’s approval of teplizumab as the first disease-modifying therapy for T1DM and the first therapy aimed at delaying the clinical onset of any immune-mediated disease represents a paradigm shift in the treatment of T1DM.

  • Cate Speake
  •  &  Carla J. Greenbaum

Perspective | 18 April 2023

Why does the immune system destroy pancreatic β-cells but not α-cells in type 1 diabetes?

In type 1 diabetes, the immune system destroys pancreatic β-cells but not neighbouring α-cells. Here, the authors describe the key differences between β-cells and α-cells that could account for their differential autoimmune vulnerability, and how these differences could result in the preferential endurance and survival of α-cells over β-cells.

  • Decio L. Eizirik
  • , Florian Szymczak
  •  &  Roberto Mallone

Perspective | 13 March 2023

A perspective on treating type 1 diabetes mellitus before insulin is needed

This Perspective discusses potential approaches to managing patients in the early stages of developing type 1 diabetes mellitus, which could enable the initiation of insulin therapy to be delayed in some patients.

  • Danijela Tatovic
  • , Parth Narendran
  •  &  Colin M. Dayan

Research Highlight | 10 March 2023

Interventions in people newly diagnosed with type 1 diabetes mellitus

Research Highlight | 24 February 2023

Reprogramming lymph nodes in type 1 diabetes mellitus

  • Shimona Starling

News & Views | 04 January 2023

Monogenic diabetes mellitus hidden in autoantibody-negative diabetes mellitus

A considerable proportion of autoantibody-negative children with type 1 diabetes mellitus actually have monogenic forms of diabetes mellitus, which enables tailored treatment. Thus, a diagnosis of monogenic diabetes mellitus should be considered and genetically tested for in this group of patients, even if the clinical criteria for monogenic diabetes mellitus are not met.

  • Stepanka Pruhova
  •  &  Petra Dusatkova

Research Highlight | 31 October 2022

Engineered T regs prevent diabetes mellitus in mice

Review Article | 31 October 2022

Exercise in adults with type 1 diabetes mellitus

Exercise has many beneficial effects; however, glycaemia needs to be carefully managed in patients with type 1 diabetes mellitus undertaking exercise. This Review characterizes the exercise response in people with type 1 diabetes mellitus and provides clinical management strategies to address glucose control around exercise.

  • Michael C. Riddell
  •  &  Anne L. Peters

Hypoglycaemia in type 1 diabetes mellitus: risks and practical prevention strategies

Hypoglycaemia is a common occurrence in people with type 1 diabetes mellitus, and can have serious consequences. This Review defines hypoglycaemia in type 1 diabetes mellitus, and also outlines its frequency, risk factors and adverse outcomes. Ways to prevent and treat this complication of insulin therapy are also discussed.

  • Jasleen Kaur
  •  &  Elizabeth R. Seaquist

In Brief | 09 September 2022

Cognitive function in T1DM improved by hybrid closed-loop insulin delivery

News & Views | 15 August 2022

Glucagon receptor antagonists might stimulate β-cell expansion

In a recent issue of Cell Reports , Xi et al. reported on their studies of an anti-glucagon receptor antibody in several mouse models of insulin-deficient diabetes mellitus, in which they show substantial increase in β-cell mass from enhanced replication and transdifferentiation of glucagon-expressing α-cells to insulin-expressing β-cells.

  • Maria F. Rubin de Celis
  •  &  Susan Bonner-Weir

Research Highlight | 26 July 2022

Highlights from ADA 82 nd Scientific Sessions

Review Article | 06 June 2022

The burden and risks of emerging complications of diabetes mellitus

This article discusses evidence for the emergence of a different set of complications associated with diabetes mellitus from the traditional ones, outlines the risks and burden of these associated complications and considers implications for the future management of diabetes mellitus.

  • Dunya Tomic
  • , Jonathan E. Shaw
  •  &  Dianna J. Magliano

Review Article | 01 June 2022

Persistent coxsackievirus B infection and pathogenesis of type 1 diabetes mellitus

This Review highlights evidence that persistent enterovirus infections, particularly coxsackievirus B, trigger and/or accelerate islet autoimmunity in susceptible individuals, thereby leading to type 1 diabetes mellitus (T1DM). The potential for vaccination or antiviral therapies to prevent T1DM onset is also considered.

  • Magloire Pandoua Nekoua
  • , Enagnon Kazali Alidjinou

Comment | 16 May 2022

Progress in islet transplantation is more important than ever

It is increasingly clear that pancreatic islet replacement is needed to provide a comprehensive treatment for the growing numbers of patients with type 1 diabetes mellitus. Advances from the past year suggest that this goal might now be within reach.

  • Stefan R. Bornstein
  • , Barbara Ludwig
  •  &  Charlotte Steenblock

Research Highlight | 20 April 2022

GLP1–oestrogen agonist protects β-cells from insulin-deficient diabetes mellitus

In Brief | 08 March 2022

Multi-omics analyses of human islets in T1DM

Research Highlight | 23 February 2022

Increasing success of islet transplantation

Research Highlight | 10 December 2021

Stem-cell derived pancreatic endoderm cells in the treatment of T1DM

Research Highlight | 08 December 2021

Exploring the regulation of glucagon secretion

In Brief | 25 October 2021

Potential role for follicular T reg cells in T1DM

Research Highlight | 05 October 2021

Melatonin prevents diabetes mellitus-induced bone loss

Comment | 24 September 2021

Type 1 diabetes mellitus and polycystic ovary syndrome

Up to one in four women with type 1 diabetes mellitus (T1DM) also have polycystic ovary syndrome (PCOS). Under subcutaneous insulin administration, systemic hyperinsulinism might trigger PCOS in women predisposed to the condition. However, very little is known about the long-term consequences of androgen excess in women with T1DM, and management guidelines are lacking.

  • Héctor F. Escobar-Morreale
  • , Ane Bayona
  •  &  Manuel Luque-Ramírez

Review Article | 17 August 2021

One hundred years of insulin therapy

It is 100 years since the famous experiments that identified insulin and showed that this protein could be used to treat people with type 1 diabetes mellitus. This Review charts the developments in insulin research over the past century and highlights future directions for this field.

  • Chantal Mathieu
  • , Pieter-Jan Martens
  •  &  Roman Vangoitsenhoven

In Brief | 30 June 2021

The largest study of genetics of T1DM

News & Views | 24 June 2021

Temporal coding of ERK signalling in β-cells

A new study has reported genetic evidence that MEK–ERK signalling is needed by β-cells, both for maintenance of β-cell mass and for optimization of insulin release. Their results point towards a new challenge of disentangling ERK signalling across multiple time scales.

  • Mark O. Huising
  •  &  John G. Albeck

Research Highlight | 22 March 2021

New combination therapy shows promise for recent-onset type 1 diabetes mellitus

Review Article | 08 December 2020

Type 1 diabetes mellitus as a disease of the β-cell (do not blame the immune system?)

This Review examines the evidence that β-cells are active participants in the dialogue with the immune system during the development of type 1 diabetes mellitus. The authors suggest that therapies targeting β-cell health, vitality and function might prove essential, in combination with immunotherapy, to change the course of events leading to β-cell destruction.

  • Bart O. Roep
  • , Sofia Thomaidou
  •  &  Arnaud Zaldumbide

Year in Review | 30 November 2020

Shortening the paths to type 1 diabetes mellitus prevention

The development and application of effective immunotherapies for type 1 diabetes mellitus has lagged behind our ability to identify and stage individuals in pre-clinical stages of disease. This Year in Review addresses advances in immunotherapy aimed towards prevention and our readiness to roll out screening in the broader population.

  • Anette-G. Ziegler
  •  &  Ezio Bonifacio

News & Views | 21 October 2020

Transplantation of stem cell-derived pancreatic islet cells

A large fraction of patients with diabetes mellitus require insulin treatment to control glucose metabolism; however, this treatment brings risks of hypoglycaemia and provides suboptimal metabolic control. Transplantation of stem cell-derived pancreatic islet cells could be an ideal solution, which is approaching clinical translation.

  • Giacomo Lanzoni
  •  &  Camillo Ricordi

Research Highlight | 02 September 2020

Type 1 diabetes mellitus: another step closer to pancreatic β-cell transplantation

  • Alan Morris

Comment | 28 August 2020

Revisiting the role of inflammation in the loss of pancreatic β-cells in T1DM

Islet inflammation (insulitis) in type 1 diabetes mellitus is triggered by a deleterious dialogue between β-cells and the immune system, inducing β-cell dysfunction and death. This concept, outlined in our 2009 Review, has been confirmed and extended. Here, we provide a brief update of the field and outline key pending questions.

  •  &  Maikel L. Colli

News & Views | 14 July 2020

A novel cellular engineering approach to diabetes mellitus

For type 1 diabetes mellitus (T1DM), keeping glucose levels within the normal range of 65–150 mg/dl with administered insulin has had limited success. Now, Fussenegger and colleagues have engineered cells to release insulin in response to electrical signals, but can this advance lead to better glucose control?

  • Gordon C. Weir

Review Article | 25 June 2020

Emerging routes to the generation of functional β-cells for diabetes mellitus cell therapy

This Review highlights the research advances, advantages and challenges in several different strategies for generating functional β-cells for therapeutic use in diabetes mellitus. In addition, scalable bioengineering processes are also discussed for the realization of the therapeutic potential of derived β-cells.

  • Gopika G. Nair
  • , Emmanuel S. Tzanakakis
  •  &  Matthias Hebrok

Review Article | 12 May 2020

Pancreatic β-cells in type 1 and type 2 diabetes mellitus: different pathways to failure

Understanding the mechanisms behind β-cell failure in diabetes mellitus is critical to prevent or revert disease. This Review highlights new findings from studies performed on human β-cells or on samples obtained from patients with type 1 or type 2 diabetes mellitus.

  • Décio L. Eizirik
  • , Lorenzo Pasquali
  •  &  Miriam Cnop

Research Highlight | 01 May 2020

Role of long non-coding RNA in T1DM

Research Highlight | 07 April 2020

β-cell dedifferentiation prior to insulitis prevents T1DM

Research Highlight | 09 March 2020

Restoring β-cells

News & Views | 12 February 2020

A predictive CD8 + T cell phenotype for T1DM progression

In a cross-sectional study of individuals with type 1 diabetes mellitus, those who were designated to be slow disease progressors had an increased proportion of autoreactive, islet-specific CD8 + T cells expressing an ‘exhausted’ phenotype. By contrast, rapid disease progressors had increased numbers of islet-specific CD8 + T cells with a transitional memory phenotype.

  • F. Susan Wong
  •  &  Li Wen

Research Highlight | 27 January 2020

Advances in GDF15 research

Advertisement

Browse broader subjects

  • Autoimmune diseases

Quick links

  • Explore articles by subject
  • Guide to authors
  • Editorial policies

new research on diabetes type 1

We've detected unusual activity from your computer network

To continue, please click the box below to let us know you're not a robot.

Why did this happen?

Please make sure your browser supports JavaScript and cookies and that you are not blocking them from loading. For more information you can review our Terms of Service and Cookie Policy .

For inquiries related to this message please contact our support team and provide the reference ID below.

IMAGES

  1. Predicting and Planning for Type 1 Diabetes: Advances in Screening and

    new research on diabetes type 1

  2. Type 1 Diabetes, Research and You

    new research on diabetes type 1

  3. What Is Type 1 Diabetes?

    new research on diabetes type 1

  4. Open-Source Automated Insulin Delivery in Type 1 Diabetes

    new research on diabetes type 1

  5. Type 1 Diabetes Research

    new research on diabetes type 1

  6. Next Stop Cure? A Quick History of Diabetes Research

    new research on diabetes type 1

VIDEO

  1. दिल्ली में होगा Diabetes का सबसे बड़ा सेमिनार रजिस्ट्रेशन के लिए संपर्क करें

  2. Breaking Discoveries: The Latest Research on Type-1 Diabetes

  3. New Study Shows: Reversing Diabetes Permanently May Be Possible!

  4. In The Know: Innovations in Type 1 Diabetes Research: Closer to the Cure

  5. Diabetes Everything You Need to Know

  6. Why does Diabetes Type 1 occur?

COMMENTS

  1. Type 1 diabetes

    Type 1 diabetes (also known as diabetes mellitus) is an autoimmune disease in which immune cells attack and destroy the insulin-producing cells of the pancreas. The loss of insulin leads to the ...

  2. New advances in type 1 diabetes

    Type 1 diabetes is an autoimmune condition resulting in insulin deficiency and eventual loss of pancreatic β cell function requiring lifelong insulin therapy. Since the discovery of insulin more than 100 years ago, vast advances in treatments have improved care for many people with type 1 diabetes. Ongoing research on the genetics and immunology of type 1 diabetes and on interventions to ...

  3. New Type 1 Diabetes Treatment Eliminates Need for Insulin

    The recommended minimum dose is 5,000 equivalent islet number (EIN) per kg for the first infusion, and 4,500 EIN/kg for subsequent infusions, the drugmaker said. The drug is currently only recommended for people who experience recurrent and severe hypoglycemia or have hypoglycemia unawareness. It is not for all people with type 1 diabetes, or ...

  4. Breakthrough diabetes study could lead to end of regular insulin

    "For the 135,000 Australians with type 1 diabetes, this is the holy grail. This is it," he said. "There's a potential here that this research might lead to the cure of type 1 diabetes, at some ...

  5. FDA Approves First Cellular Therapy to Treat Patients with Type 1 Diabetes

    240-672-8872. Consumer: 888-INFO-FDA. The FDA approved Lantidra, the first cellular therapy for the treatment of adults with type 1 diabetes who are unable to approach average blood glucose levels ...

  6. Study unlocks potential breakthrough in type 1 diabetes treatment

    Rice University bioengineer Omid Veiseh and collaborators identified new biomaterial formulations that could help turn the page on type 1 diabetes treatment, opening the door to a more sustainable ...

  7. A Cure for Type 1 Diabetes? For One Man, It Seems to Have Worked

    Brian Shelton may be the first person cured of Type 1 diabetes. "It's a whole new life," Mr. Shelton said. "It's like a miracle.". Amber Ford for The New York Times. Brian Shelton's ...

  8. A new therapy for treating Type 1 diabetes

    A new therapy for treating Type 1 diabetes. October 20, 2021. Promising early results show that longstanding Harvard Stem Cell Institute (HSCI) research may have paved the way for a breakthrough treatment of Type 1 diabetes. Utilizing research from the Melton Lab, Vertex Pharmaceuticals has developed VX-880, an investigational stem cell-derived ...

  9. Stem cell therapy could be breakthrough against type 1 diabetes

    by Dennis Thompson. An experimental stem cell therapy can essentially cure type 1 diabetes by restoring insulin production in some patients, early clinical trial results show. Seven out of 12 ...

  10. Diabetes took over her life, until a stem cell therapy freed her

    Scott Soleimanpour, director of the Michigan Diabetes Research Center, was diagnosed with Type 1 diabetes when he was 5 years old and recalled that throughout his youth, doctors told him there ...

  11. FDA approves first drug to delay type 1 diabetes

    Nature Medicine explores the latest translational and clinical research news, with an immunotherapy that delays the onset of type 1 diabetes in high-risk children and adults.

  12. Study provides preliminary evidence in favor of a new type 1 diabetes

    A new study led by researchers at the University of Chicago Medicine and Indiana University suggests that an existing drug could be repurposed to treat type 1 diabetes, potentially reducing dependence on insulin as the sole treatment. The research centers on a medication known as α-difluoromethylornithine (DFMO), which inhibits an enzyme that ...

  13. Semaglutide in Early Type 1 Diabetes

    To the Editor: Most patients with new-onset type 1 diabetes have substantial intact beta-cell reserve. 1 Thus, we analyzed the efficacy of semaglutide, an agonist of glucagon-like peptide 1 (GLP-1 ...

  14. New and Emerging Technologies in Type 1 Diabetes

    New technologies in type 1 diabetes. Intensive insulin therapy for the management of type 1 diabetes (T1D) was established as the standard of care based on the results of the Diabetes Control and Complication Trial (DCCT), which conclusively demonstrated the benefits of tight glycemic control. 1 However, those who received intensive insulin management were at increased risk for severe ...

  15. Type 1 diabetes mellitus: a brave new world

    Hummel, S. et al. Children diagnosed with presymptomatic type 1 diabetes through public health screening have milder diabetes at clinical manifestation. Diabetologia 66 , 1633-1642 (2023).

  16. 'Artificial Pancreas' Can Help Kids With Type 1 Diabetes

    THURSDAY, Jan. 20, 2022 (HealthDay News) -- Having a child with type 1 diabetes can be a challenging health condition for parents to manage, but new research suggests an "artificial pancreas ...

  17. Immune Interventions at Onset of Type 1 Diabetes

    New England Journal of Medicine. ... Also the parents of children with type 1 diabetes need psychological support, Acta Paediatrica, ... Research; Reviews; Clinical Cases; Perspective; Commentary;

  18. Potential target for Type 1 diabetes treatment

    Monash University. "Potential target for Type 1 diabetes treatment." ScienceDaily. ScienceDaily, 22 July 2022. <www.sciencedaily.com / releases / 2022 / 07 / 220722082419.htm>. Scientists have ...

  19. A major breakthrough toward new treatments for Type 1 and Type 2 diabetes

    Reviewed by Emily Henderson, B.Sc. Jul 22 2022. A world-first study by Monash University, in Melbourne, Australia has discovered a pathway to the regeneration of insulin in pancreatic stem cells ...

  20. Breakthrough research unveils β-cell dynamics in Type 1 diabetes

    In the field of Type 1 diabetes, research has largely focused on understanding the immune component, but our study argues that the β-cell is a significant player. Our findings suggest that the β ...

  21. Recent Advances

    Identification of a new player in type 1 diabetes risk. Type 1 diabetes is caused by an autoimmune attack of insulin-producing beta-cells. While genetics and the environment are known to play important roles, the underlying factors explaining why the immune system mistakenly recognize beta-cells as foreign is not known.

  22. Repurposed drug offers new potential for managing type 1 diabetes

    November 1, 2023. Source: Indiana University. Summary: A new study presents exciting future possibilities for the management of type 1 diabetes and the potential reduction of insulin dependency ...

  23. Study reveals best exercise for type-1 diabetes patients

    A new study has revealed the best types of exercise for patients with type-1 diabetes. A new study has revealed the best types of exercise for patients with type-1 diabetes. The research was led ...

  24. Type 1 Diabetes Research At-a-Glance

    The burden of type 1 diabetes remains substantial, and more research is needed to improve the lives of people with type 1 diabetes and to find a cure. To this end, ADA-funded research continues to drive progress by funding research projects topics spanning technology, islet transplantation, immunology, improving transition to self-management ...

  25. Sleep duration in type 2 and tackling the type 1 immune ...

    A research team from Germany has recently investigated if diabetes distress is most influenced by what people perceive their blood sugars to be or by actual CGM readings. They conducted an observational study over 17 days on 379 participants with type 1 diabetes or type 2 diabetes.

  26. Are Chicken, Red Meat And Processed Meat Safe To Eat? New Research

    To assess the link between meat and the risk of type 2 diabetes, the team, led by researchers at the University of Cambridge, analyzed existing data from nearly 2 million people across 31 study ...

  27. Does low lipoprotein(a) increase the risk of diabetes? New research

    New research has shown that, contrary to some previous studies, low levels of lipoprotein (a)—a parcel of fats and protein in the blood—do not cause type 2 diabetes. The findings may alleviate ...

  28. Type 1 diabetes

    This Review highlights new findings from studies performed on human β-cells or on samples obtained from patients with type 1 or type 2 diabetes mellitus. Décio L. Eizirik , Lorenzo Pasquali

  29. Link between red and processed meats and type 2 diabetes found by ...

    Regularly eating red and processed meats in particular is associated with a higher risk of type 2 diabetes, according to an analysis of data from 31 study cohorts published Tuesday in the journal ...

  30. Diabetes Drugs Could Help Ward Off Dementia, New Study Suggests

    Certain types of medicines used to treat type 2 diabetes might help to prevent some cases of dementia, according to new research that builds on previous evidence suggesting these drugs might be ...