• Office of Graduate Education

Program Overview

Graphic showing the organization of the Stanford Biosciences PhD programs

When you join Stanford Biosciences, you join a collaborative network tackling some of the world’s toughest questions.  The Stanford Biosciences  Home Programs  comprise nine departments and five interdisciplinary programs, which span the School of Medicine and the School of Humanities and Sciences.  These Home Programs are the foundation of our collaborative culture, offering students the opportunity to tailor their graduate education  by working within an entire network of faculty, labs, and approaches to pursue their research.

Each student is admitted to a particular Home Program and initiates training with a core group of faculty, students, and postdoctoral fellows who share scientific interests. Many Home Programs host annual retreats—facilitating the exchange of ideas between Stanford colleagues and fostering team-building—as well as seminar series that invite outside speakers.

In addition to that intimate setting, all Biosciences students have access to faculty in every Home Program for laboratory rotations and potential thesis work.  One of Stanford Biosciences’ biggest strengths is the physical proximity of programs and labs , encouraging face-to-face collaboration and feeding an environment of interdisciplinary innovation. Indeed, the Biosciences PhD Programs combine the supportive atmosphere of a small program with the many opportunities afforded by a large umbrella program—the best of both worlds.

A closer look

The 14 Home Programs in Stanford Biosciences’ collaborative network:

Biochemistry

Illustration of an organic molecule

Department website | Find Faculty

phd genetics stanford

Biomedical Data Science

phd genetics stanford

Cancer Biology

phd genetics stanford

Chemical and Systems Biology

phd genetics stanford

Developmental Biology

phd genetics stanford

Microbiology and Immunology

phd genetics stanford

Molecular and Cellular Physiology

phd genetics stanford

Neurosciences

phd genetics stanford

Stem Cell Biology and Regenerative Medicine

phd genetics stanford

Structural Biology

phd genetics stanford

Related programs

Bioengineering.

phd genetics stanford

Program website | Find Faculty

Biomedical Physics

phd genetics stanford

Health Policy

phd genetics stanford

Epidemiology and Clinical Research

phd genetics stanford

Dual-Degree Programs

Providing a select group of medical students with an opportunity to pursue a training program designed to equip them for careers in academic investigative medicine.

Program website

Plant Biology

Dominique Bergmann

Dominique Bergmann

Stanford Logo

Joseph A Berry

Adrien Burlacot

Adrien Burlacot

Barnabas Daru

Barnabas Daru

José R. Dinneny

José R. Dinneny

Rodolfo Dirzo

Rodolfo Dirzo

Jeff Dukes

David Ehrhardt

Chris Field

Chris Field

Arthur Grossman

Arthur Grossman

Aidee Guzman

Aidee Guzman

Andrew Leslie

Andrew Leslie

Sharon R. Long

Sharon R. Long

Erin Mordecai

Erin Mordecai

Mary Beth Mudgett

Mary Beth Mudgett

Kabir Peay

Virginia Walbot

Kyle Gabriel Daniels

Kyle Gabriel Daniels

Assistant professor of genetics, web page:  http://www.danielssynbio.net.

  • Print Profile
  • Email Profile
  • View Stanford-only Profile
  • Publications

Kyle obtained his BS in Biochemistry from the University of Maryland College Park in 2010, conducting undergraduate research with Dr. Dorothy Beckett, PhD. He obtained his PhD in Biochemistry with a certificate in Structural Biology and Biophysics. His dissertation is titled "Kinetics of Coupled Binding and Conformational Change in Proteins and RNA" and was completed in the laboratory of Dr. Terrence G. Oas, PhD. Kyle performed postdoctoral training with Dr. Wendell A. Lim, PhD at UCSF studying how CAR T cell phenotype is encoded by modular signaling motifs within chimeric antigen receptors. Kyle's lab is interested in harnessing the principles of modularity to engineer receptors and gene circuits to control cell functions. The lab will use synthetic biology, medium- and high-throughput screens, and machine learning to: (1) Engineer immune cells to achieve robust and durable responses against various cancer targets, (2) Coordinate behavior of multiple engineered cell types in cancer, autoimmune disease, and payload delivery, (3) Control survival, proliferation, and differentiation of hematopoietic stem cells (HSCs) and immune cells, and (4) Explore principles of modularity related to engineering receptors and gene circuits in mammalian cells.

Academic Appointments

  • Assistant Professor, Genetics
  • Member, Bio-X
  • Member, Stanford Cancer Institute
  • Academic [email protected] University - Faculty Department: Genetics Position: Assistant Professor

Additional Info

  • Mail Code: 5120
  • Other Names: Kyle Daniels

phd genetics stanford

  • Curriculum Vitae PDF
  • NIH Biosketch PDF

2023-24 Courses

  • Advanced Genetics GENE 205 (Win)
  • Directed Investigation BIOE 392 (Spr, Sum)
  • Directed Reading in Genetics GENE 299 (Sum)
  • Directed Study BIOE 391 (Win, Spr)
  • Graduate Research CBIO 399 (Sum)
  • Graduate Research GENE 399 (Sum)
  • Supervised Study GENE 260 (Win, Spr, Sum)

Stanford Advisees

  • Doctoral Dissertation Reader (AC) Jeremy Bjelajac , Zaria Contejean, Simone Evans, Laura Guerrero , Julian Perez
  • Postdoctoral Faculty Sponsor Alex Beckett , Wan Sang Cho
  • Doctoral Dissertation Advisor (AC) Ethan Chen, Jodie Lunger, Antonio Salcido-Alcantar JR

All Publications

Cell therapies are powerful technologies in which human cells are reprogrammed for therapeutic applications such as killing cancer cells or replacing defective cells. The technologies underlying cell therapies are increasing in effectiveness and complexity, making rational engineering of cell therapies more difficult. Creating the next generation of cell therapies will require improved experimental approaches and predictive models. Artificial intelligence (AI) and machine learning (ML) methods have revolutionized several fields in biology including genome annotation, protein structure prediction, and enzyme design. In this review, we discuss the potential of combining experimental library screens and AI to build predictive models for the development of modular cell therapy technologies. Advances in DNA synthesis and high-throughput screening techniques enable the construction and screening of libraries of modular cell therapy constructs. AI and ML models trained on this screening data can accelerate the development of cell therapies by generating predictive models, design rules, and improved designs.

View details for DOI 10.1111/imr.13236

View details for PubMedID 37415280

Chimeric antigen receptor (CAR) costimulatory domains derived from native immune receptors steer the phenotypic output of therapeutic T cells. We constructed a library of CARs containing ~2300 synthetic costimulatory domains, built from combinations of 13 signaling motifs. These CARs promoted diverse human T cell fates, which were sensitive to motif combinations and configurations. Neural networks trained to decode the combinatorial grammar of CAR signaling motifs allowed extraction of key design rules. For example, non-native combinations of motifs that bind tumor necrosis factor receptor-associated factors (TRAFs) and phospholipase C gamma 1 (PLCγ1) enhanced cytotoxicity and stemness associated with effective tumor killing. Thus, libraries built from minimal building blocks of signaling, combined with machine learning, can efficiently guide engineering of receptors with desired phenotypes.

View details for DOI 10.1126/science.abq0225

View details for PubMedID 36480602

View details for PubMedCentralID PMC10026561

We're sorry but you will need to enable Javascript to access all of the features of this site.

Stanford Online

Advanced topics in genetics and genomics program.

Stanford School of Medicine , Stanford Center for Health Education

All-Access Plan: $3,475 USD Interest-free payment options Per course $695 USD

30-35 hours

Get Started

Technologies like CRISPR and stem cell therapies, and research such as those in the fields of epigenetics and biotechnology, are changing how we understand and develop solutions for medicine, biology, and agriculture. The fields of genetics and genomics are constantly evolving from personalized treatment plans based on your genes, lifestyle, and environment to manipulating DNA and editing genetic code. The Advanced Topics in Genetics and Genomics track allows you to dive deeper into the topics you care about and provides you with up-to-date information on cutting-edge research and technologies in the health and medicine industries today.

This is the second Certificate Program in our two-part Genetics and Genomics series. Learn how research on genes and genomes is being applied to innovate the health and medicine industries. Need to brush up on the fundamentals? Check out the Foundations in Genetics and Genomics Program .

  • Preview Image
  • Course/Course #
  • Time Commitment
  • Availability

Complete a Minimum of 5 to Earn a Certificate

Course image for Principles and Practices of Gene Therapy

Principles and Practices of Gene Therapy

Course image for Understanding Cancer at the Genetic Level

Understanding Cancer at the Genetic Level

Course image for Genetic Engineering and Biotechnology

Genetic Engineering and Biotechnology

Course image for Stem Cell Therapeutics

Stem Cell Therapeutics

Course image for Personal Genomics and Your Health

Personal Genomics and Your Health

Course image for New Frontiers in Cancer Genomics

New Frontiers in Cancer Genomics

Course image for Epigenetics and Microbiomics in Precision Health

Epigenetics and Microbiomics in Precision Health

Course image for Biology and Applications of the CRISPR/Cas System

Biology and Applications of the CRISPR/Cas System

Flexible enrollment options, enroll in individual courses.

Pay as you go

$695 per course, 60 days to complete.

View and complete course materials, video lectures, assignments and exams, at your own pace. You also get 60 days of email access to your Stanford teaching assistant.

All-Access Plan

One Year Subscription

Gain access to all 8 courses for one year with the All-Access Plan, and complete a minimum of 5 to earn a certificate. View and complete course materials, video lectures, assignments, and exams, at your own pace. You also get 365 days of email access to your Stanford teaching assistant.

Groups and Teams

Special Pricing

Enroll as a group or team and learn together. We can advise you on the best group options to meet your organization’s training and development goals and provide you with the support needed to streamline the process. Participating together, your group will develop a shared knowledge, language, and mindset to tackle the challenges ahead.

What You'll Earn

Genetics and Genomics Sample Certificate

You’ll earn a Stanford Certificate of Achievement in Advanced Topics in Genetics and Genomics when you successfully complete a minimum of 5 courses out of 8 in this program.

This Stanford Certificate of Achievement represents a minimum of 50-90 hours of Stanford coursework, including learning outcomes assessment(s) (such as a project or capstone submission, final essays, presentations, a proctored exam, or other requirement), and other relevant criteria established by the School of Engineering.

Because your credential will be delivered as a digital certificate verified on the blockchain, you’ll be able to share your accomplishments with your network on your LinkedIn profile or other social platforms, verify your credentials to employers, and communicate the scope of your acquired expertise.

Academic Director

Michael Snyder

Michael Snyder

Stanford W. Ascherman Professor of Genetics

  • School of Medicine

Michael Snyder is the Stanford Ascherman Professor and Chair of Genetics and the Director of the Center of Genomics and Personalized Medicine. Dr. Snyder received his Ph.D. training at the California Institute of Technology and carried out postdoctoral training at Stanford University.

He is a leader in the field of functional genomics and proteomics, and one of the major participants of the ENCODE project. His laboratory study was the first to perform a large-scale functional genomics project in any organism, and has launched many technologies in genomics and proteomics. These including the development of proteome chips, high resolution tiling arrays for the entire human genome, methods for global mapping of transcription factor binding sites (ChIP-chip now replaced by ChIP-seq), paired end sequencing for mapping of structural variation in eukaryotes, de novo genome sequencing of genomes using high throughput technologies and RNA-Seq. These technologies have been used for characterizing genomes, proteomes and regulatory networks. Seminal findings from the Snyder laboratory include the discovery that much more of the human genome is transcribed and contains regulatory information than was previously appreciated, and a high diversity of transcription factor binding occurs both between and within species.

He has also combined different state-of–the-art “omics” technologies to perform the first longitudinal detailed integrative personal omics profile (iPOP) of person and used this to assess disease risk and monitor disease states for personalized medicine. He is a cofounder of several biotechnology companies, including Protometrix (now part of Life Tehcnologies), Affomix (now part of Illumina), Excelix, and Personalis, and he presently serves on the board of a number of companies

Teaching Team

Russ Altman

Russ Altman

Kenneth Fong Professor

Bioengineering

Russ Biagio Altman is the Kenneth Fong Professor of Bioengineering, Genetics, Medicine, Biomedical Data Science and (by courtesy) Computer Science) and past chairman of the Bioengineering Department at Stanford University. His primary research interests are in the application of computing and informatics technologies to problems relevant to medicine. He is particularly interested in methods for understanding drug action at molecular, cellular, organism and population levels. His lab studies how human genetic variation impacts drug response (e.g., http://www.pharmgkb.org/). Other work focuses on the analysis of biological molecules to understand the actions, interactions and adverse events of drugs (e.g., http://feature.stanford.edu/). He helps lead an FDA-supported Center of Excellence in Regulatory Science & Innovation.

Dr. Altman holds an AB from Harvard College, and an MD from Stanford Medical School, and a PhD in Medical Information Sciences from Stanford. He received the U.S. Presidential Early Career Award for Scientists and Engineers and a National Science Foundation CAREER Award. He is a fellow of the American College of Physicians (ACP), the American College of Medical Informatics (ACMI), the American Institute of Medical and Biological Engineering (AIMBE), and the American Association for the Advancement of Science (AAAS). He is a member of the National Academy of Medicine (formerly the Institute of Medicine, IOM). He is a past-president, founding board member, and a fellow of the International Society for Computational Biology (ISCB), and a past-president of the American Society for Clinical Pharmacology & Therapeutics (ASCPT). He has chaired the Science Board advising the FDA commissioner, served on the NIH Director’s Advisory Committee, and co-chaired the IOM Drug Forum. He is an organizer of the annual Pacific Symposium on Biocomputing, and a founder of Personalis, Inc. Dr. Altman is board certified in Internal Medicine and in Clinical Informatics. He received the Stanford Medical School graduate teaching award in 2000 and mentorship award in 2014.

Ximena Ares

Ximena Ares

Licensing Associate

Stanford University

Ximena Ares is a Licensing Associate at the Stanford Office of Technology Licensing (OTL). Dr. Ares received her Ph.D training in Molecular Biology in Buenos Aires, Argentina and completed her postdoctoral training at the University of California, San Francisco in Human Genetics. Later, she was a scientist at Geron Corporation and a Research Fellow at the Molecular Sciences Institute in Berkeley, California. She joined Stanford OTL in 2004, where she manages a portfolio of about 250 life sciences inventions, makes decisions about their intellectual property protection and negotiates license agreements and other contracts.

Euan Ashley

Euan Ashley

Roger and Joelle Burnell Professor

Born and raised in Scotland, Euan Angus Ashley graduated with 1st class Honors in Physiology and Medicine from the University of Glasgow. He completed medical residency and a PhD in molecular cardiology at the University of Oxford before moving to Stanford University where he trained in cardiology and advanced heart failure joining the faculty in 2006. His group is focused on the application of genomics to medicine. In 2010, he led the team that carried out the first clinical interpretation of a human genome. The paper published in the Lancet was the focus of over 300 news stories, became one of the most cited articles in clinical medicine that year, and was featured in the Genome Exhibition at the Smithsonian in DC. The team extended the approach in 2011 to a family of four and now routinely apply genome sequencing to the diagnosis of patients at Stanford hospital where Dr Ashley directs the Clinical Genome Service and the Center for Inherited Cardiovascular Disease. In 2013, Dr Ashley was recognized by the White House Office of Science and Technology Policy for his contributions to Personalized Medicine. In 2014, Dr Ashley became co-chair of the steering committee for the NIH Undiagnosed Diseases Network. Dr Ashley is a recipient of the National Innovation Award from the American Heart Association (AHA) and a National Institutes of Health (NIH) Director’s New Innovator Award. He is a member of the AHA Council on Functional Genomics, and the Institute of Medicine (IOM) of the National Academy of Sciences Roundtable on Translating Genomic-Based Research for Health. He is a peer reviewer for the NIH and the AHA as well as journals including Nature, the New England Journal of Medicine, the Lancet and the Journal of Clinical Investigation. He is co-founder of Personalis Inc, a genome scale genetic diagnostics company. Father to three young Americans, in his ‘spare’ time, he tries to understand American football, plays the saxophone, and conducts research on the health benefits of single malt Scotch whisky.

Laura Attardi

Laura Attardi

Catharine and Howard Avery Professor

Academic Appointments

  • Professor, Radiation Oncology - Radiation and Cancer Biology
  • Professor, Genetics
  • Member, Bio-X
  • Member, Child Health Research Institute
  • Member, Stanford Cancer Institute

Adi Barzel

Israeli Society of Gene and Cell Therapy

Administrative Appointments

Founder of LogicBio Therapeutics, a gene therapy company (2014) Member of the American Society of Gene and Cell therapy (2011)

Honors & Awards

Presidential symposium lecturer at the annual meeting of the American Society for Gene and Cell Therapy (ASGCT) (2014) Recipient of the Child Health Research Institute (CHRI) fellowship (2013) 1st place- Stanford Genetics Department “Big Idea” Contest (2012)

Professional Education

MSc, Tel Aviv University, Tel Aviv, Israel, Genetics (2006) PhD, Tel Aviv University, Tel Aviv, Israel, Genetics (2011) Postdoctoral fellow, Stanford University (2011)

Michael Bassik

Michael Bassik

Associate Professor, Genetics

Chris Bjornson

Chris Bjornson

Senior Scientific Researcher

Chris Bjornson holds a Ph.D. from the University of Washington and has served as a Research Associate for Calos Lab, Stanford University.

Kasia  Bryc

Senior Scientist, Population Genetics

Katarzyna ("Kasia") Bryc is a Senior Scientist of Population Geneticist at 23andMe. Dr. Bryc has developed statistical models that leverage genetic data to learn about ancient human history and migrations, recent population admixture and other forces shaping the human genome. Her prior research illuminated the genetic population structure of Africans, and the complex admixture of African Americans and Hispanic/Latino populations. Dr. Bryc received a B.A. from Stanford University, and her M.S. and Ph.D. in Biometry at Cornell under Dr. Carlos Bustamante. Prior to joining 23andMe, she was a NIH Ruth L. Kirschstein National Research Fellow at Harvard Medical School with Dr. David Reich, where she developed statistical methods to infer genetic diversity from sequence data.

Michele Calos

Michele Calos

Professor, Genetics (Emerita)

Professor, Genetics

Member, Bio-X

Member, Child Health Research Institute

Chair, School of Medicine Appointments and Promotions Committee (2008 - 2010)

  • Searle Scholar Award, Searle Family Foundation (1986)
  • Graduate Fellowship, National Science Foundation (1979)
  • B.A., M.A., Oxford University, Zoology
  • Ph.D., Harvard University, Biochemistry & Molecular Biology
  • Postdoc., University of Geneva, Biologie Moleculaire

Community and International Work

  • Member, Board of Directors, American Society of Gene and Cell Therapy
  • Advisory Committee, United States Food and Drug Administration, Bethesda, Maryland

Jan Carette

Jan Carette

Associate Professor, Microbiology and Immunology

Mildred Cho

Mildred Cho

Professor, Pediatrics and Medicine

Emily Crane

Emily Crane

Senior Principle Scientific Researcher

Dr. Emily Crane grew up in Palo Alto, California.  She left the sunshine state to earn her B.A. in Biology from Carleton College in Northfield, Minnesota.  She returned to California in 2005, where she enrolled in graduate school at UC Berkeley and began training as a geneticist with Dr. Barbara Meyer. She studied the connection between gene expression regulation and chromosome structure, earning a Ph.D. in Molecular and Cell Biology in 2011.  While pursuing her doctorate she was able to first pair research with teaching as a Graduate Student Instructor for both lab and lecture courses. She is currently a NIH IRACDA postdoctoral fellow at Stanford University, which allows her to do research while also teaching as a visiting professor at San Jose State University.  At Stanford she works in Dr. Jin Li’s lab, where she is currently setting up a screening system to look for regulators of RNA editing. Dysregulation of RNA editing has been linked to neurological diseases and cancers, and its complete loss is lethal.  Emily is passionate about the rapidly expanding field of personal genomics, which will soon be an indispensable resource for improving patient health.

Christina Curtis

Christina Curtis

Professor, Genetics and Biomedical Data Science

The Curtis laboratory couples innovative experimental approaches, high-throughput omic technologies, statistical inference and computational modeling to interrogate the evolutionary dynamics of tumor progression and therapeutic resistance. To this end, Dr. Curtis and her team have developed an integrated experimental and computational framework to measure clinically relevant patient-specific parameters and to measure clonal dynamics. Her research also aims to develop a systematic interpretation of genotype/phenotype associations in cancer by leveraging state-of-the-art technologies and robust data integration techniques. For example, using integrative statistical approaches to mine multiple data types she lead a seminal study that redefined the molecular map of breast cancer, revealing novel subgroups with distinct clinical outcomes and subtype-specific drivers.

Barbara Dunn

Barbara Dunn

Final Foods Inc.

Barbara Dunn is a Senior Biocuration Research Scientist in the Department of Genetics at Stanford University, currently working with the Saccharomyces Genome Database in the laboratory of Dr. J. Michael Cherry. She received her A.B. in Botany at Berkeley, and her Ph.D. in Biological Chemistry at Harvard University, where she studied yeast telomeres in the laboratory of Dr. Jack Szostak. Her recent research has focused on using whole-genome DNA and RNA sequencing, ChIP-Seq, array-CGH, and other “omics” methods to broadly explore evolution in yeast, and particularly the genome structures and genome evolution of industrial yeasts (lager, ale, wine, ethanol, bread).

Dianna Fisk

Dianna Fisk

Senior Scientific Curator

Dianna received her B.S. in Biology from Marquette University and her Ph.D. in Molecular Biology, Cell Biology and Genetics from the University of Oregon, where she studied how nuclear and chromosomal gene expression are coordinately regulated, in the laboratory of Dr. Alice Barkan. She then went on to work as a Scientific Curator under Dr. David Botstein and Dr. J. Michael Cherry, at the Saccharomyces Genome Database (SGD). After 13 years of analyzing, assembling and organizing the vast amounts of detailed biochemical and genetic data available on yeast, she switched to interpretation of human genomics data and is now the Senior Biocurator at the Stanford Clinical Genomics Service.

James Ford

Professor, Medicine and Genetics

Dr. Ford is a medical oncologist and geneticist at Stanford, devoted to studying the genetic basis of breast and GI cancer development, treatment and prevention. Dr. Ford graduated in 1984 Magna Cum Laude (Biology) from Yale University where he later received his M.D. degree from the School of Medicine in 1989. He was a internal medicine resident (1989-91), Clinical Fellow in Medical Oncology (1991-94), Research Fellow of Biological Sciences (1993-97) at Stanford, and joined the faculty in 1998. He is currently Associate Professor of Medicine (Oncology) and Genetics, and Director of the Stanford Cancer Genetics Clinic, at the Stanford University Medical Center. Dr. Ford’s research goals are to understand the role of genetic changes in cancer genes in the risk and development of common cancers. He studies the role of the p53 and BRCA1 tumor suppressor genes in DNA repair, and uses techniques for high-throughput genomic analyses of cancer to identify molecular signatures for targeted therapies. Recently, his team has identified a novel class of drugs that target DNA repair defective breast cancers, and have opened clinical trials at Stanford and nationally using these “PARP inhibitors” for the treatment of women with “triple-negative” breast cancer. Dr. Ford’s clinical interests include the diagnosis and treatment of patients with a hereditary pre-disposition to cancer. He runs the Stanford Cancer Genetics Clinic, that sees patients for genetic counseling and testing of hereditary cancer syndromes, and enters patients on clinical research protocols for prevention and early diagnosis of cancer in high-risk individuals.

Julie Granka

Julie Granka

Principal Scientist, Statistical Genetics

Julie Granka is a biologist and a statistician with expertise in genetics and evolution who currently serves as the Director of Personalized Genomics at Ancestry.com. Dr. Granka has experience developing and applying advanced computational tools to genetic data to understand population history and evolution. During fieldwork in South Africa, she collected and analyzed DNA samples from an African hunter-gatherer population to uncover the genetic basis of human height and skin pigmentation. Dr. Granka has also analyzed numerous other African populations to identify regions of the human genome where positive natural selection has occurred in recent history. In addition, she has studied the genetics of other organisms, including M. tuberculosis, the organism that causes tuberculosis. Dr. Granka received a B.S. in Biometry and Statistics from Cornell University where she worked with Dr. Carlos Bustamante. Afterwards, she received an M.S. in Statistics and a Ph.D. in Biology with Dr. Marcus Feldman at Stanford University.

Hank Greely

Hank Greely

Deane F. and Kate Edelman Johnson Professor of Law

  • Stanford Law School

Henry T. "Hank" Greely is the Deane F. and Kate Edelman Johnson Professor of Law and Professor, by courtesy, of Genetics at Stanford University. He specializes in ethical, legal, and social issues arising from advances in the biosciences, particularly from genetics, neuroscience, and human stem cell research. He chairs the California Advisory Committee on Human Stem Cell Research and the steering committee of the Stanford University Center for Biomedical Ethics, and directs the Stanford Center for Law and the Biosciences and the Stanford Program in Neuroscience and Society. He serves as a member of the NAS Committee on Science, Technology, and Law; the NIGMS Advisory Council, the Institute of Medicine’s Neuroscience Forum, and the NIH Multi-Center Working Group on the BRAIN Initiative. Professor Greely graduated from Stanford in 1974 and from Yale Law School in 1977. He served as a law clerk for Judge John Minor Wisdom on the United States Court of Appeals for the Fifth Circuit and for Justice Potter Stewart of the United States Supreme Court. He began teaching at Stanford in 1985.

Arthur Grossman

Arthur Grossman

Professor (by courtesy), Biology

Arthur Grossman has been a Staff Scientist at The Carnegie Institution for Science, Department of Plant Biology since 1982, and holds a courtesy appointment as Professor in the Department of Biology at Stanford University. He has performed research across fields ranging from plant biology, microbiology, marine biology, ecology, genomics, engineering and photosynthesis and initiated large scale algal genomics by leading the Chlamydomonas genome project (sequencing of the genome coupled to transcriptomics). During his tenure at Carnegie, he mentored more than fifteen PhD students and approximately 40 post-doctoral fellows (many of whom have become very successful independent scientists at both major universities and in industry). In 2002 he received the Darbaker Prize (Botanical Society of America) for work on microalgae and in 2009 received the Gilbert Morgan Smith Medal (National Academy of Sciences) for the quality of his publications on marine and freshwater algae. In 2015 he was Vice Chair of the Gordon Research Conference on Photosynthesis and in 2017 was Chair of that same conference (Photosynthetic plasticity: From the environment to synthetic systems). He also gave the Arnon endowed lecture on photosynthesis in Berkeley in March of 2017, has given numerous plenary lectures and received a number of fellowships throughout his career, including the Visiting Scientist Fellowship - Department of Life and Environmental Sciences (DiSVA), Università Politecnica delle Marche (UNIVPM) (Italy, 2014), the Lady Davis Fellowship (Israel, 2011) and most recently the Chaire Edmond de Rothschild (to work IBPC in Paris in 2017-2018). He has been Co-Editor in Chief of Journal of Phycology and has served on the editorial boards of many well-respected biological journals including the Annual Review of Genetics, Plant Physiology, Eukaryotic Cell, Journal of Biological Chemistry, Molecular Plant, and Current Genetics. He has also reviewed innumerable papers and grants, served on many scientific panels that has evaluated various programs for granting agencies [NSF, CNRS, Marden program (New Zealand)] and private companies. He has also served on scientific advisory boards for both nonprofit and for profit companies including Phoenix Bioinformatics, Excelixis, Martex, Solazyme/TerraVia, Checkerspot and Phycoil.

Bethann Hromatka

Bethann Hromatka

Senior Director, Medical Affairs

Puma Biotechnology, Inc.

Natalie Jaeger

Natalie Jaeger

Senior Scientist

DKFZ German Cancer Research Center

Natalie is a Post-Doctoral Scientist in the laboratory of Professor Michael Snyder at Stanford University. Her duties include applying approaches comprising genome sequencing, transcriptomics, and proteomics to the analysis of human disease, to help understand the molecular basis of disease and aid the development of diagnostics and therapeutics.

Mark Kay

Dennis Farrey Family Professor of Genetics

Mark A. Kay, MD, PhD, is the Director of the Program in Human Gene Therapy, and Professor in the Department of Pediatrics and Genetics at Stanford University School of Medicine. Dr. Kay is one of the founders of the American Society of Gene Therapy and served as its President in 2005-2006. Dr. Kay received the E. Mead Johnson Award for Research in Pediatrics in 2000 and was elected to the American Society for Clinical Investigation in 1997. He has organized many national and international conferences, including the first Gordon Conference related to gene therapy.

Kay is respected worldwide for his work in gene therapy for hemophilia and viral hepatitis. He is an Associate Editor of Human Gene Therapy and Molecular Therapy, and a member of the editorial boards of other peer-reviewed publications.

Here at Stanford University, Dr. Kay is involved in many committees, including the Administrative Panel on Biosafety Committee, and Chair of the Berry Foundation Committee. Along with his work in Gene Therapy Dr. Kay is an avid photographer and enjoys spending time outdoors photographing wildlife.

Stuart Kim

Professor, Developmental Biology (Emeritus)

Dr. Kim's lab's research focuses are in C. elegans aging, human aging, cell lineage analyzer, and ModENCODE.

Students, fellows, and faculty in the Department of Developmental Biology are working at the forefront of basic science research to understand the molecular mechanisms that generate and maintain diverse cell types in many different contexts, including the embryo, various adult organs, and the evolution of different species. Research groups use a wide array of cutting-edge approaches including genetics, genomics, computation, biochemistry, and advanced imaging, in organisms ranging from microbes to humans. This work has connections to many areas of human health and disease, including stem cell biology, aging, cancer, diabetes, arthritis, infectious disease, autoimmune disease, neurological disorders, and novel strategies for stimulating repair or regeneration of body tissues.

Jane Lebkowski

Jane Lebkowski

Regenerative Patch Technologies

President of Research and Development, Asterias

Joe Lipsick

Joe Lipsick

Professor, Pathology and Genetics

Since participating in the initial identification of the protein product of the v-Myb oncogene as a postdoctoral fellow, Dr. Lipsick has dedicated his research career to understanding the function of the highly conserved Myb oncogene family. The laboratory has initially focused on the retroviral v-Myb oncogene and its cellular homologue, c-Myb. More recently, they have focused on the fruit fly Drosophila melanogaster as a model organism for understanding the human Myb oncogene family. They created the first null mutants of the sole Drosophila Myb gene, and showed that the absence of Myb resulted in mitotic abnormalities including chromosome condensation defects, aneuploidy, polyploidy, and aberrant spindle formation. In collaboration with the laboratory of Michael Botchan (UC Berkeley), they also showed that Myb was required for the site-specific initiation of DNA replication that occurs during chorion gene amplification in adult ovarian follicle cells. They themselves then showed that the absence of Myb causes a failure in the normal progression of chromosome condensation from heterchromatin to euchromatin. Most recently, they have found that Myb acts in opposition to repressive E2F and RB proteins to epigenetically regulate the expression of key components of the spindle assembly checkpoint and spindle pole regulatory pathways.

Kelly Ormond

Kelly Ormond

Adjunct Professor, Genetics

Kelly Ormond is a genetic counselor (US ABGC certified) and ELSI researcher. She received her MS in Genetic Counseling from Northwestern University (1994) and a post-?graduate certificate in Clinical Medical Ethics from the MacLean Center at the University of Chicago (2001). She joined the Health Ethics and Policy Lab as a Senior Scientist in February 2021, and is an Adjunct Professor in the Department of Genetics at Stanford School of Medicine, Stanford University, California, USA

Matthew Porteus

Matthew Porteus

Sutardja Chuk Professor

Dr. Porteus was raised in California and was a local graduate of Gunn High School before completing A.B. degree in “History and Science” at Harvard University where he graduated Magna Cum Laude and wrote an thesis entitled “Safe or Dangerous Chimeras: The recombinant DNA controversy as a conflict between differing socially constructed interpretations of recombinant DNA technology.” He then returned to the area and completed his combined MD, PhD at Stanford Medical School with his PhD focused on understanding the molecular basis of mammalian forebrain development with his PhD thesis entitled “Isolation and Characterization of TES-1/DLX-2: A Novel Homeobox Gene Expressed During Mammalian Forebrain Development.” After completion of his dual degree program, he was an intern and resident in Pediatrics at Boston Children’s Hospital and then completed his Pediatric Hematology/Oncology fellowship in the combined Boston Chidlren’s Hospital/Dana Farber Cancer Institute program. For his fellowship and post-doctoral research he worked with Dr. David Baltimore at MIT and CalTech where he began his studies in developing homologous recombination as a strategy to correct disease causing mutations in stem cells as definitive and curative therapy for children with genetic diseases of the blood, particularly sickle cell disease. Following his training with Dr. Baltimore, he took an independent faculty position at UT Southwestern in the Departments of Pediatrics and Biochemistry before again returning to Stanford in 2010 as an Associate Professor. During this time his work has been the first to demonstrate that gene correction could be achieved in human cells at frequencies that were high enough to potentially cure patients and is considered one of the pioneers and founders of the field of genome editing—a field that now encompasses thousands of labs and several new companies throughout the world. His research program continues to focus on developing genome editing by homologous recombination as curative therapy for children with genetic diseases but also has interests in the clonal dynamics of heterogeneous populations and the use of genome editing to better understand diseases that affect children including infant leukemias and genetic diseases that affect the muscle. Clinically, Dr. Porteus attends at the Lucille Packard Children’s Hospital where he takes care of pediatric patients undergoing hematopoietic stem cell transplantation.

Jose Prado

Vice President of Program Management

Jose loves talking about science, especially to non-scientists. He has been involved in science outreach and education since he first learned of the simplicity and beauty of the structure of DNA. Naturally, Jose went on to graduate school at Stanford where he received a M.A. in Education and a Ph.D. in Developmental Biology. His doctoral work focused on understanding how epigenetic regulators control the biology of adult stem cells. For example, when some of these regulators misbehave, stem cells are lost to the detriment of the tissue they normally maintain. Why? How? Well, Jose still doesn’t know, but he hopes his work helped add one more piece to the never-ending puzzle of scientific research. After finishing his Ph.D., Jose moved to St. Louis, MO and joined Monsanto as part of a rotational leadership program, where he’s been doing a number of fun things both close and far from his science background. His year-long rotations have spanned biotechnology regulation and policy, global technology strategy, and development of molecular detection technologies. All of these rotations have complemented each other and contributed to his passion for sustainably and safely increasing food productivity and agricultural efficiency. Jose’s favorite activity is backpacking and talking about how light his backpack is over an open fire under the Milky Way-splattered sky of the Sierra Nevada. When he’s not outdoors, which is more frequent than he’d like, Jose enjoys good beer (peanut butter chocolate milk stout is real and delicious), good music (Tool), and thoughtful discussions involving science, education and politics.

Li (Stanley) Qi

Li (Stanley) Qi

Associate Professor

Maria Grazia Roncarolo

Maria Grazia Roncarolo

George D. Smith Professor

Maria Grazia Roncarolo, MD is the co-director of the Institute for Stem Cell Biology and Regenerative Medicine, the George D. Smith Professor in Stem Cell and Regenerative Medicine, Professor of Pediatrics and of Medicine (blood and marrow transplantation), chief of the Division of Pediatric Stem Cell Transplantation and Regenerative Medicine, and co-director of the Bass Center for Childhood Cancer and Blood Diseases.

Dr. Roncarolo leads efforts to translate scientific discoveries in genetic diseases and regenerative medicine into novel patient therapies, including treatments based on stem cells and gene therapy. A pediatric immunologist by training, she earned her medical degree at the University of Turin, Italy. She spent her early career in Lyon, France, where she focused on severe inherited metabolic and immune diseases, including severe combined immunodeficiency (SCID), better known as the "bubble boy disease." Dr. Roncarolo was a key member of the team that carried out the first stem cell transplants given before birth to treat these genetic diseases.

While studying inherited immune diseases, Dr. Roncarolo discovered a new class of T cells. These cells, called T regulatory type 1 cells, help maintain immune system homeostasis by preventing autoimmune diseases and assisting the immune system in tolerating transplanted cells and organs. Recently, Dr. Roncarolo completed the first clinical trial using T regulatory type 1 cells to prevent severe graft-versus-host disease in leukemia patients receiving blood-forming stem-cell transplants from donors who were not genetic matches.

Dr. Roncarolo worked for several years at DNAX Research Institute for Molecular and Cellular Biology in Palo Alto, where she contributed to the discovery of novel cytokines, cell-signaling molecules that are part of the immune response. She studied the role of cytokines in inducing immunological tolerance and in promoting stem cell growth and differentiation.

Dr. Roncarolo developed new gene-therapy approaches, which she pursued as director of the Telethon Institute for Cell and Gene Therapy at the San Raffaele Scientific Institute in Milan. She was the principal investigator leading the successful gene therapy trial for SCID patients who lack an enzyme critical to DNA synthesis, which is a severe life-threatening disorder. That trial is now considered the gold standard for gene therapy in inherited immune diseases. Under her direction, the San Raffaele Scientific Institute has been seminal in showing the efficacy of gene therapy for otherwise untreatable inherited metabolic diseases and primary immunodeficiencies.

Dr. Roncarolo's goal at Stanford is to build the teams and infrastructure to move stem cell and gene therapy to the clinic quickly and to translate basic science discoveries into patient treatments. In addition, her laboratory continues to work on T regulatory cell-based treatments to induce immunological tolerance after transplantation of donor tissue stem cells. In Nature Medicine, Dr. Roncarolo recently published her discovery of new biomarkers for T regulatory type 1 cells, which will be used to purify the cells and to track them in patients. She also is investigating genetic chronic inflammatory and autoimmune diseases that occur due to impairment in T regulatory cell functions.

Julien Sage

Julien Sage

Elaine and John Chambers Professor

Dr. Sage studied biology at the École Normale Supérieure in Paris and did his PhD at the University of Nice and post-doctoral training at MIT. He is currently the Elaine and John Chambers Professor in Pediatric Cancer and a Professor of Genetics at Stanford University where he serves as the co-Director of the Cancer Biology PhD program. For his work on cancer genetics, he has been awarded a Damon Runyon Cancer Research Foundation Scholar Award, a Leukemia and Lymphoma Society Scholar Award, and an R35 Outstanding Investigator Award from the National Cancer Institute. Dr. Sage’s work has focused on the RB tumor suppressor pathway and how inactivation of RB promotes tumorigenesis in children and adult patients. In the past few years, the Sage lab has developed pre-clinical models for small cell lung cancer, an RB-mutant cancer, and has used these models to investigate signaling pathways driving the growth of this cancer type and to identify novel therapeutic targets in this recalcitrant cancer.

Lars Steinmetz

Lars Steinmetz

Dieter Schwarz Foundation Endowed Professor

Lars Steinmetz studied molecular biophysics and biochemistry at Yale University and conducted his Ph.D. research on genome-wide approaches to study gene function and natural phenotypic diversity at Stanford University. After a brief period of postdoctoral research at the Stanford Genome Technology Center, where he worked on functional genomic technology development, he moved to Europe in 2003. At the European Molecular Biology Laboratory (EMBL) in Heidelberg, Germany, he started his own group, focused on applying functional genomic approaches and high-throughput methods to study complex traits, transcription and the mitochondrial organelle at a systems level. In parallel, he maintained a focused group at the Stanford Genome Technology Center working on technology development. Since 2009, Lars acted as Joint Head of the department of Genome Biology at EMBL.

In October 2013 Lars became Professor of Genetics at Stanford University and Co-Director of the Stanford Genome Technology Center. His lab develops and applies cutting-edge technologies to investigate the function and mechanism of transcription, the genetic basis of complex phenotypes and the genetic and molecular systems underpinning disease. Their ultimate goal is to enable the development of personalized, preventative medicine.

In parallel to his research activities at Stanford, Lars continues to lead his lab at EMBL and acts as Associate Head of Genome Biology and Senior Scientist at EMBL. His Stanford and EMBL labs collaborate very closely.

In addition to his academic endeavours, Lars is a consultant and board member of several companies, advising in the areas of genetics and personalized medicine.

Ruth Tennen

Ruth Tennen

Senior Product Scientist I

Ruth Tennen picked up her first pipette as a summer high-school student in a lab at the University of Connecticut Health Center. She received her bachelor’s degree in molecular biology from Princeton University and her Ph.D. in cancer biology from Stanford University. Her graduate work examined the intersection between epigenetics and disease: how human cells squeeze two meters of DNA into their nuclei while keeping that DNA accessible and dynamic, and how DNA packaging goes awry during cancer and aging. As a graduate student, Ruth shared her love of science by teaching hands-on classes to students at local schools, hospitals, and museums and by blogging on the San Jose Tech Museum’s website.

After completing her Ph.D., Ruth moved to Washington, DC to serve as an AAAS Science & Technology Policy Fellow. Working in the Bureau of African Affairs at the U.S. Department of State, she collaborated with colleagues in DC and at U.S. Embassies abroad to promote scientific capacity building, science education, and entrepreneurship in sub-Saharan Africa. She managed the Apps4Africa program, which challenges young African innovators to develop mobile apps that tackle problems in their communities. She also traveled to South Africa and Ghana, where she delivered lectures and workshops designed to spark the scientific excitement of young learners.

Ruth is currently a Product Scientist at 23andMe. In her free time, Ruth enjoys running, reading, quoting Seinfeld, and cheering for the UConn Huskies.

Sören Turan

Sören Turan

Bayer Pharmaceuticals

Postdoc, Genetics

DFG Fellowship (2013)

  • Diploma TU-Braunschweig (Germany) 2007
  • Dr. rer. nat. Medical School Hannover (Germany)

Research Interest: Gene Therapy, (Stem) Cell Therapy, Genome Engineering, CRISPR/Cas9 gene editing

Monte Winslow

Monte Winslow

Associate Professor of Genetics and of Pathology

Monte Winslow is an Associate Professor of Genetics and Pathology at Stanford University.

Stacey Wirt Taylor

Stacey Wirt Taylor

Commercial Planning Manager

Adaptive Biotechnologies Corp.

Stacey received her B.A. in Biology from Wellesley College and her Ph.D. in Cancer Biology from Stanford University. Her dissertation focused on uncovering new mechanisms for cell cycle control in mouse embryonic stem cells and neural progenitors. She went on to complete a post-doctoral fellowship in genome engineering, where she worked to develop nuclease technology for editing disease-causing mutations in human stem cells. In her spare time, Stacey volunteers at the San Jose Tech Museum, likes to camp and hike throughout Northern California, and is an avid photographer.

Joseph Wu

Simon H. Stertzer, MD, Professor

Joseph C. Wu, MD, PhD is Director of the Stanford Cardiovascular Institute and Professor in the Department of Medicine (Cardiology) and Department of Radiology (Molecular Imaging Program) at the Stanford University School of Medicine. Dr. Wu received his medical degree from Yale. He completed his medicine internship, residency and cardiology fellowship training at UCLA followed by a PhD (Molecular & Medical Pharmacology) at UCLA. Dr. Wu has received several awards, including the Burroughs Wellcome Foundation Career Award in Medical Sciences, Baxter Foundation Faculty Scholar Award, AHA Innovative Research Award, AHA Established Investigator Award, NIH Director’s New Innovator Award, NIH Roadmap Transformative Award, and Presidential Early Career Award for Scientists and Engineers given out by President Obama. He is on the editorial board of Journal Clinical Investigation, Circulation Research, Circulation Cardiovascular Imaging, JACC Imaging, Human Gene Therapy, Molecular Therapy, Stem Cell Research, and Journal of Nuclear Cardiology. He is a Council Member for the American Society for Clinical Investigation and a Scientific Advisory Board Member for the Keystone Symposia. His clinical activities involve adult congenital heart disease and cardiovascular imaging. His lab research focuses on stem cells, drug discovery, and molecular imaging.

Upcoming Events

Webinar Image for Health and Medicine Programs

Health & Medicine Programs Information Session

You may also like.

Program image for  Stanford Medical Statistics

Medical Statistics Program

Stanford School of Medicine, Stanford Center for Health Education

Artificial Intelligence in Healthcare

Artificial Intelligence in Healthcare

Foundations of Genetics and Genomics

Foundations of Genetics and Genomics Program

  • Engineering
  • Artificial Intelligence
  • Computer Science & Security
  • Business & Management
  • Energy & Sustainability
  • Data Science
  • Medicine & Health
  • Explore All
  • Technical Support
  • Master’s Application FAQs
  • Master’s Student FAQs
  • Master's Tuition & Fees
  • Grades & Policies
  • Graduate Application FAQs
  • Graduate Student FAQs
  • Graduate Tuition & Fees
  • Community Standards Review Process
  • Academic Calendar
  • Exams & Homework FAQs
  • HCP History
  • Enrollment FAQs
  • Tuition, Fees, & Payments
  • Custom & Executive Programs
  • Free Online Courses
  • Free Content Library
  • School of Engineering
  • Graduate School of Education
  • Stanford Doerr School of Sustainability
  • School of Humanities & Sciences
  • Stanford Human Centered Artificial Intelligence (HAI)
  • Graduate School of Business
  • Learning Collaborations
  • Stanford Credentials
  • What is a digital credential?
  • Grades and Units Information
  • Our Community
  • Get Course Updates

Stanford University

Along with Stanford news and stories, show me:

  • Student information
  • Faculty/Staff information

We want to provide announcements, events, leadership messages and resources that are relevant to you. Your selection is stored in a browser cookie which you can remove at any time using “Clear all personalization” below.

test

Shellfish is a rich source of taurine, an amino acid that has been associated in some studies with reductions in body weight and improvements in endurance exercise. sum41 / stock.adobe.com

A new biochemical pathway linked to diet and body weight hints at the possibility of a new class of anti-obesity drugs, Stanford Medicine researchers and their colleagues have found.

The study, conducted in mice, found a relationship between a previously unstudied body weight-associated gene called PTER and an amino acid called taurine, which has been associated in some studies with reductions in body weight and improvements in endurance exercise.

The newly identified relationship highlights a body weight-regulating metabolic pathway independent of the mechanisms of weight loss drugs like Ozempic or Wegovy, suggesting the two approaches could work in tandem to one day provide additional options for weight control in people.

“This is an additional branch of a very complex system of feeding and body weight regulation,” said Jonathan Long , PhD, an assistant professor of pathology. “We all want to know, ‘What should I eat? When should I eat it? How does it affect me?’ But many diet-based studies offer confusing information. We are trying to answer this question in a more concrete way — starting with molecules, then pathways, then working our way up to the physiology.”

Long is the senior author of the study , which was published Aug. 7 in Nature . Postdoctoral scholar Wei Wei , PhD, is the lead author of the research.

Weight, nutrition and hunger: a complex relationship

The complicated web of interactions that govern when we get hungry, what and how much we eat, and how much we weigh is exceedingly difficult to untangle. Previous research in Long’s laboratory uncovered a relationship between an “anti-hunger” molecule called lac-phe produced after vigorous exercise and the diabetes drug metformin that can cause moderate weight loss.

In the new study, Wei and Long focused on taurine, which is abundant in protein-rich foods such as meat and shellfish. Taurine supplementation in mice can lower body weight and enhance exercise performance. Conversely, mice genetically engineered to have low levels of taurine show muscle atrophy and a decreased capacity for exercise. But exactly how taurine has these effects has been unclear.

Jonathan Long

Jonathan Long

“Taurine does all sorts of stuff in our bodies, and is metabolized in many different ways,” Long said. “It’s a complicated soup.”

One byproduct, or metabolite, of taurine is called N-acetyltaurine, which is formed when taurine and another molecule called acetate are combined. Levels of N-acetyltaurine in the body fluctuate in response to physiological changes — including endurance exercise and diet — that affect taurine and acetate levels.

As they were exploring taurine metabolism and its relationship to body weight, Wei and Long identified an enzyme called PTER, for phosphotriesterase-related, that converts N-acetyltaurine back into taurine. (Many metabolic pathways can run both forward and backward — a molecular seesaw that allows the body to respond nimbly to changes in diet, exercise and other variables.)

The gene that encodes PTER is part of a panel of genes that have been associated with body mass index in humans. Mutations in one, MC4R, cause people to feel hungry all the time and are strongly associated with obesity. But many of the others, including PTER, have remained mysterious.

“Despite this genetic association, no one really knew what the PTER did or why it was linked to body mass index in humans,” Long said. “It was an orphan gene that encoded an orphan enzyme. Now we know that PTER breaks down, or hydrolyzes, N-acetyltaurine.”

Teasing out molecular effects

When Long and Wei studied mice in which the PTER gene had been knocked out, they found that the animals had higher levels of N-acetyltaurine in their blood and tissues than control mice — a not unexpected finding when PTER is missing. When they were fed a diet high in fat, and given taurine in their drinking water, the mice without PTER ate and weighed significantly less than the control animals after eight weeks. The difference in body weight was due entirely to a reduction of fat mass in the knockout animals, the researchers found.

Next, they tested whether giving the mice N-acetyltaurine directly had a similar effect. They found that a daily dose of N-acetyltaurine reduced body weight and food intake in both PTER knockout mice and the control animals fed a high-fat diet.

Further studies showed that the PTER pathway is independent of the pathway used by the GLP1 receptor agonists, such as Ozempic, currently on the market.

This is a fundamental advance in understanding how we eat affects our weight and our bodies.

“This is a complicated interaction of genetics and diet that can regulate the body weight of these animals,” Long said. “This is a fundamental advance in understanding how we eat affects our weight and our bodies.”

Interestingly, it’s not clear how N-acetyltaurine is made. It is possible that the gut microbiome plays a role. The researchers found that mice treated with antibiotics for one week to kill off much of their gut bacteria had 30% less N-acetyltaurine circulating in their bodies than before treatment.

“This possible role of the gut microbiome is interesting in the context of research into the rational manipulation of our intestinal bacteria for health,” Long said. “Perhaps we could one day have probiotic or dietary interventions that promote the formation of N-acetyltaurine to reduce body weight. But much more work needs to be done.”

Long and his colleagues are continuing their studies of PTER and taurine metabolites in people. The task is daunting but exciting.

“All of the stuff we eat, and we eat a lot of stuff, can interact with our bodies at a molecular and genetic level,” Long said. “It’s not a simple code. But we’re starting to understand these intersecting pathways at a much more granular level than ever before.”

Researchers from the Massachusetts Institute of Technology; the University of California, Irvine; and the Arc Institute of Palo Alto contributed to the study.

The work was supported by the National Institutes of Health (grants DK105203, DK124265, DK111916 and K99AR081618), the Stanford Diabetes Research Center, the Stanford Cardiovascular Institute, the American Heart Association, the Jacob Churg Foundation, the Weintz Family COVID-19 Research Fund, the Wu Tsai Human Performance Alliance, the Phil and Penny Knight Initiative for Brain Resilience at the Wu Tsai Neurosciences Institute, the Ono Pharma Foundation, and the Stanford Maternal and Child Health Research Institute.

Stanford University has filed a provisional patent application on PTER-N-acetyltaurine for the treatment of cardiometabolic disease.

Read a Q&A with Jonathan Long about his research.

Media Contacts

Stanford University

Life Science Research Professional 2

🔍 School of Humanities and Sciences, Stanford, California, United States

The School of Humanities and Sciences (H&S) is the foundation of a liberal arts education at Stanford. The school encompasses 24 departments and 25 interdisciplinary programs. H&S is home to fundamental and applied research, where free, open, and critical inquiry is pursued across disciplines. As the university’s largest school, H&S serves as the foundation of a Stanford undergraduate education no matter which discipline students pursue as a major. Graduate students work alongside world-renowned faculty to pursue and shape foundational research that leads to breakthroughs and discoveries that shed new light on the past, influence the present, and shape the future. Together, faculty and students in H&S engage in inspirational teaching, learning, and research every day.

DEPARTMENT DESCRIPTION: The Department of Biology is part of the School of Humanities and Science at Stanford: https://biology.stanford.edu/. The department offers resources and experience learning from and working with faculty involved in research on ecology, neurobiology, population biology, plant and animal physiology, biochemistry, immunology, cell and developmental biology, genetics, and molecular biology. The offices, labs, and personnel of the Department of Biology are located in the Anne T. and Robert M. Bass Biology Research, Gilbert Biological Sciences, James H. Clark Center, ChEM-H and the Wu Tsai Neurosciences Institute, and Jerry Yang and Akiko Yamazaki Environment and Energy (Y2E2) buildings.

POSITION SUMMARY: The Department of Biology is seeking a highly motivated and organized individual to join our dynamic team as a Life Science Research Professional 2 in the Agroecology Research Group, led by Assistant Professor Aidee Guzman. The successful candidate will play a crucial role in establishing the lab’s organizational structure and workflow as well as supporting and facilitating the research activities. It is critical that this individual exhibit the abilities to practice sound judgment and decision-making, effective written & oral communication, strong attention to detail and respectful relationship management. This individual must also exhibit a strong desire to continuously learn new and unfamiliar topics, policies and procedures as they relate to the ongoing research in the lab – the ability to translate this information into operational successes will be critical. This position offers an exciting opportunity to contribute to cutting-edge research in the fields of agroecology and microbial ecology while gaining professional management and leadership skills.

This is a 100% FTE, continuing, exempt position. This position will be based on the Stanford campus.

If you believe that this opportunity is a match for your knowledge, skills and abilities, we encourage you to apply. Thank you for considering employment opportunities with the School of Humanities and Sciences.

CORE DUTIES:

· Independently conduct a portion of the research project(s). Make recommendations on experimental design and/or research direction to principal investigator.

· Independently conduct complex (lab and/or field) experiments to gather data for a portion of a major research project.

· Interpret and analyze results, often where few guidelines exist, and make modifications to existing procedures and protocols.

· Develop new research protocols where appropriate protocols are not described in the literature or where modification or adaptation of standard procedures and protocols is required.

· Participate in multidisciplinary teams across different faculties or schools.

· Perform ongoing literature review to remain current with new procedures and related research; apply to ongoing research and development of new protocols.

· Contribute substantively to the preparation of papers for publication, especially in the results section, and to publication of findings. Present ongoing work to colleagues and/or academic conferences.

· Oversee supply and equipment budget under supervision of principal investigator or business manager.

· Work with health and safety department to ensure lab complies with regulations and all required trainings.

· Supervise (either formally or informally) staff or students as needed, including oversight and direction on techniques, as well as consultation on project work. Serve as a technical resource for other research staff.

· Oversee the daily activities of the laboratory including lab maintenance; maintain lab stock, manage chemical inventory and safety records, and provide general lab support as needed. May assist with purchasing laboratory equipment.

* Other duties may also be assigned.

EDUCATION AND EXPERIENCE:

· Bachelor's degree in related scientific field and two years of relevant work experience; or Master’s degree in a related scientific field.

KNOWLEDGE, SKILLS, AND ABILITIES:

· Comprehensive understanding of scientific principles.

· General computer skills and ability to quickly learn and master computer programs, databases, and scientific applications.

· Strong analytical skills and excellent judgment.

· Ability to maintain detailed records of experiments and outcomes.

· Ability to work under deadlines with general guidance is essential.

· Excellent organizational skills and demonstrated ability to accurately complete detailed work.

In addition, preferred requirements include:

● Experience with experimental setup and sample collection in greenhouse and field settings.

● Knowledge of agroecological and microbial techniques in lab and field settings.

WORKING CONDITIONS:

· May require working in close proximity to blood borne pathogens.

· May require work in an environment where animals are used for teaching and research.

· Position may at times require the employee to work with or be in areas where hazardous materials and/or infectious diseases are present.

· Employee must perform tasks that require the use of personal protective equipment, such as safety glasses and shoes, protective clothing and gloves, and possibly a respirator.

· May require extended or unusual work hours based on research requirements and business needs.

The expected pay range for this position is $71,000 to $88,000 per annum.

Stanford University provides pay ranges representing its good faith estimate of what the university reasonably expects to pay for a position. The pay offered to a selected candidate will be determined based on factors such as (but not limited to) the scope and responsibilities of the position, the qualifications of the selected candidate, departmental budget availability, internal equity, geographic location and external market pay for comparable jobs.

At Stanford University, base pay represents only one aspect of the comprehensive rewards package. The Cardinal at Work website (https://cardinalatwork.stanford.edu/benefits-rewards) provides detailed information on Stanford’s extensive range of benefits and rewards offered to employees. Specifics about the rewards package for this position may be discussed during the hiring process.

Why Stanford is for You

Imagine a world without search engines or social platforms. Consider lives saved through first-ever organ transplants and research to cure illnesses. Stanford University has revolutionized the way we live and enrich the world. Supporting this mission is our diverse and dedicated 17,000 staff. We seek talent driven to impact the future of our legacy. Our culture and unique perks empower you with:

● Freedom to grow. We offer career development programs, tuition reimbursement, or audit a course. Join a film screening, or listen to a renowned author or global leader speak.

● A caring culture. We provide superb retirement plans, generous time-off, and family care resources.

● A healthier you. Climb our rock wall, or choose from hundreds of health or fitness classes at our world-class exercise facilities. We also provide excellent health care benefits.

● Discovery and fun. Stroll through historic sculptures, trails, and museums.

● Enviable resources. Enjoy free commuter programs, ridesharing incentives, discounts and more.

The job duties listed are typical examples of work performed by positions in this job classifications and are not designed to contain or be interpreted as a comprehensive inventory of all duties, tasks and responsibilities. Specific duties and responsibilities may vary depending on department or program needs without changing the general nature and scope of the job or level of responsibility. Employees may also perform other duties as assigned.

Consistent with its obligations under the law, the University will provide reasonable accommodations to applicants and employees with disabilities. Applicants

requiring a reasonable accommodation for any part of the application or hiring process should contact Stanford University Human Resources at [email protected]. For all other inquiries, please submit a contact form.

Stanford is an equal employment opportunity and affirmative action employer. All qualified applicants will receive consideration for employment without regard to race, color, religion, sex, sexual orientation, gender identity, national origin, disability, protected veteran status, or any other characteristic protected by law.

  • Schedule: Full-time
  • Job Code: 4952
  • Employee Status: Regular
  • Requisition ID: 104227
  • Work Arrangement : On Site

My Submissions

Track your opportunities.

Similar Listings

 School of Humanities and Sciences, Stanford, California, United States

📁 Research

Post Date: Jul 16, 2024

Post Date: Jun 25, 2024

Post Date: 3 days ago

Global Impact We believe in having a global impact

Climate and sustainability.

Stanford's deep commitment to sustainability practices has earned us a Platinum rating and inspired a new school aimed at tackling climate change.

Medical Innovations

Stanford's Innovative Medicines Accelerator is currently focused entirely on helping faculty generate and test new medicines that can slow the spread of COVID-19.

From Google and PayPal to Netflix and Snapchat, Stanford has housed some of the most celebrated innovations in Silicon Valley.

Advancing Education

Through rigorous research, model training programs and partnerships with educators worldwide, Stanford is pursuing equitable, accessible and effective learning for all.

Working Here We believe you matter as much as the work

Group Dance Class In A Gym

I love that Stanford is supportive of learning, and as an education institution, that pursuit of knowledge extends to staff members through professional development, wellness, financial planning and staff affinity groups.

School of Engineering

Students Working With A Robot Arm

I get to apply my real-world experiences in a setting that welcomes diversity in thinking and offers support in applying new methods. In my short time at Stanford, I've been able to streamline processes that provide better and faster information to our students.

Phillip Cheng

Office of the Vice Provost for Student Affairs

Students Working With A Robot Arm

Besides its contributions to science, health, and medicine, Stanford is also the home of pioneers across disciplines. Joining Stanford has been a great way to contribute to our society by supporting emerging leaders.

Denisha Clark

School of Medicine

Students Working With A Robot Arm

I like working in a place where ideas matter. Working at Stanford means being part of a vibrant, international culture in addition to getting to do meaningful work.

Office of the President and Provost

Getting Started We believe that you can love your job

Join Stanford in shaping a better tomorrow for your community, humanity and the planet we call home.

  • 4.2 Review Ratings
  • 81% Recommend to a Friend

View All Jobs

EurekAlert! Science News

  • News Releases

Massive biomolecular shifts occur in our 40s and 60s, Stanford Medicine researchers find

Molecular shifts in our 40s, 60s

Stanford Medicine

If it’s ever felt like everything in your body is breaking down at once, that might not be your imagination. A new Stanford Medicine study shows that many of our molecules and microorganisms dramatically rise or fall in number during our 40s and 60s.

Researchers assessed many thousands of different molecules in people from age 25 to 75, as well as their microbiomes — the bacteria, viruses and fungi that live inside us and on our skin — and found that the abundance of most molecules and microbes do not shift in a gradual, chronological fashion. Rather, we undergo two periods of rapid change during our life span, averaging around age 44 and age 60. A paper describing these findings will be published in the journal Nature Aging Aug. 14.

“We’re not just changing gradually over time; there are some really dramatic changes,” said Michael Snyder , PhD, chair of genetics and the study’s senior author. “It turns out the mid-40s is a time of dramatic change, as is the early 60s. And that’s true no matter what class of molecules you look at.”

Xiaotao Shen, PhD, a former Stanford Medicine postdoctoral scholar, was the first author of the study. Shen is now an assistant professor at Nanyang Technological University Singapore.

These big changes likely impact our health — the number of molecules related to cardiovascular disease showed significant changes at both time points, and those related to immune function changed in people in their early 60s.

Abrupt changes in number

Snyder, the Stanford W. Ascherman, MD, FACS Professor in Genetics, and his colleagues were inspired to look at the rate of molecular and microbial shifts by the observation that the risk of developing many age-linked diseases does not rise incrementally along with years. For example, risks for Alzheimer’s disease and cardiovascular disease rise sharply in older age, compared with a gradual increase in risk for those under 60.

The researchers used data from 108 people they’ve been following to better understand the biology of aging. Past insights from this same group of study volunteers include the discovery of four distinct “ ageotypes ,” showing that people’s kidneys, livers, metabolism and immune system age at different rates in different people.

The new study analyzed participants who donated blood and other biological samples every few months over the span of several years; the scientists tracked many different kinds of molecules in these samples, including RNA, proteins and metabolites, as well as shifts in the participants’ microbiomes. The researchers tracked age-related changes in more than 135,000 different molecules and microbes, for a total of nearly 250 billion distinct data points.

They found that thousands of molecules and microbes undergo shifts in their abundance, either increasing or decreasing — around 81% of all the molecules they studied showed non-linear fluctuations in number, meaning that they changed more at certain ages than other times. When they looked for clusters of molecules with the largest changes in amount, they found these transformations occurred the most in two time periods: when people were in their mid-40s, and when they were in their early 60s.

Although much research has focused on how different molecules increase or decrease as we age and how biological age may differ from chronological age, very few have looked at the rate of biological aging. That so many dramatic changes happen in the early 60s is perhaps not surprising, Snyder said, as many age-related disease risks and other age-related phenomena are known to increase at that point in life.

The large cluster of changes in the mid-40s was somewhat surprising to the scientists. At first, they assumed that menopause or perimenopause was driving large changes in the women in their study, skewing the whole group. But when they broke out the study group by sex, they found the shift was happening in men in their mid-40s, too.

“This suggests that while menopause or perimenopause may contribute to the changes observed in women in their mid-40s, there are likely other, more significant factors influencing these changes in both men and women. Identifying and studying these factors should be a priority for future research,” Shen said.

Changes may influence health and disease risk

In people in their 40s, significant changes were seen in the number of molecules related to alcohol, caffeine and lipid metabolism; cardiovascular disease; and skin and muscle. In those in their 60s, changes were related to carbohydrate and caffeine metabolism, immune regulation, kidney function, cardiovascular disease, and skin and muscle.

It’s possible some of these changes could be tied to lifestyle or behavioral factors that cluster at these age groups, rather than being driven by biological factors, Snyder said. For example, dysfunction in alcohol metabolism could result from an uptick in alcohol consumption in people’s mid-40s, often a stressful period of life.

The team plans to explore the drivers of these clusters of change. But whatever their causes, the existence of these clusters points to the need for people to pay attention to their health, especially in their 40s and 60s, the researchers said. That could look like increasing exercise to protect your heart and maintain muscle mass at both ages or decreasing alcohol consumption in your 40s as your ability to metabolize alcohol slows.

“I’m a big believer that we should try to adjust our lifestyles while we’re still healthy,” Snyder said.

The study was funded by the National Institutes of Health (grants U54DK102556, R01 DK110186-03, R01HG008164, NIH S10OD020141, UL1 TR001085 and P30DK116074) and the Stanford Data Science Initiative.

About Stanford Medicine

Stanford Medicine is an integrated academic health system comprising the Stanford School of Medicine and adult and pediatric health care delivery systems. Together, they harness the full potential of biomedicine through collaborative research, education and clinical care for patients. For more information, please visit med.stanford.edu .

Nature Aging

10.1038/s43587-024-00692-2

Method of Research

Observational study

Subject of Research

Article publication date.

14-Aug-2024

Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.

IMAGES

  1. Education

    phd genetics stanford

  2. Home

    phd genetics stanford

  3. Home

    phd genetics stanford

  4. Masters in Genetic Counseling

    phd genetics stanford

  5. Masters in Genetic Counseling

    phd genetics stanford

  6. Home

    phd genetics stanford

COMMENTS

  1. Ph.D. Program or M.S.

    Graduate Studies The Genetics Ph.D. program provides opportunities for graduate study in all major areas of modern genetics, including identification and analysis of human disease genes, molecular evolution, gene therapy, statistical genetics, application of model organisms to problems in biology and medicine, and computational and experimental approaches to genome biology.

  2. Graduate Studies

    The key to selecting a successful graduate program is identifying the right research environment for you. To ensure the Stanford Genetics program is the appropriate Home Program within Stanford Biosciences for you, we recommend ensuring that your scientific interests align with those of the department and our faculty.

  3. Genetics and Genomics Program

    Mark A. Kay, MD, PhD, is the Director of the Program in Human Gene Therapy, and Professor in the Department of Pediatrics and Genetics at Stanford University School of Medicine.

  4. Home

    Senior authorship is shared by Michael Snyder, PhD, professor of genetics at Stanford; Tracey McLaughlin, MD, professor of medicine at Stanford; and George Weinstock, PhD, professor and director of microbial genomics at the Jackson Laboratory, an independent, nonprofit biomedical research institution.

  5. Ph.D. Program

    The Biology Ph.D. program is part of the larger Biosciences community at Stanford, which includes doctorate programs in the basic science departments at Stanford Medical School. There are two tracks within the Biology Ph.D. program: Cell, Molecular and Organismal Biology. Ecology and Evolution. (Previously a part of the Department of Biology ...

  6. GENE-PHD Program

    The PhD program in the Department of Genetics offers graduate students the opportunity to pursue a discipline that encompasses both a set of tools and a coherent way of thinking about biology and medicine. All significant areas of genetics and genomics are represented in the department, including human genetics (molecular identification of ...

  7. Admissions

    The MS Program in Human Genetics and Genetic Counseling welcomes graduate applications from individuals with a broad range of life experiences, perspectives, and backgrounds who would contribute to our community of scholars. The review process is holistic and individualized, considering each applicant's academic record and accomplishments ...

  8. Graduate Admissions

    Application and Deadline. Stanford Biology PhD Program applications are made through Graduate Admissions. The application deadline for Autumn Quarter 2024 matriculation is December 5, 2023 at 11:59pm pst. The application for the Autumn 2024 cohort will be available in September 2023. Please review the Graduate Admissions website prior to ...

  9. Master's Program in Human Genetics and Genetic Counseling

    The Stanford MS Program in Human Genetics and Genetic Counseling began in 2008 and is fully accredited by the Accreditation Council for Genetic Counseling (ACGC). This exciting translational two-year program is located in a world renowned Genetics department and a top 10 medical school alongside two nationally ranked hospitals in one of the most beautiful and culturally diverse areas of the ...

  10. Genetics

    Molly Schumer Show More Information For Undergraduates Current PhD Students Prospective PhD Students Coterm Students Postdoctoral Scholars Administrative Staff Faculty Affiliated Programs Bio-X CEHG ChEM-H Hopkins Marine Station Woods Institute Wu Tsai Neuro Contact Us Gilbert Building 371 Jane Stanford Way Stanford, CA 94305 Phone: 650-723 ...

  11. How to Apply

    For Stanford Biosciences PhD Admissions inquiries, visit our How to Apply and FAQ pages along with the Graduate Admissions website and their FAQ page for more information.

  12. Home

    Our 14 Biosciences PhD Home Programs empower students with the flexibility to tailor their education to their skills and interests as they evolve. Students work with global leaders in biomedical innovation, who provide the mentorship to answer the most difficult and important questions in biology and biomedicine. We encourage our students to flow freely between the 14 Biosciences PhD Home ...

  13. Ph.D. Program or M.S.

    Graduate Studies The Genetics Ph.D. program provides opportunities for graduate study in all major areas of modern genetics, including identification and analysis of human disease genes, molecular evolution, gene therapy, statistical genetics, application of model organisms to problems in biology and medicine, and computational and experimental approaches to genome biology.

  14. Program Overview

    Genetics An underlying theme in the Stanford Genetics Graduate Home Program is that genetics is not merely a set of tools but a coherent and fruitful way of thinking about biology and medicine. To this end, we emphasize a spectrum of approaches based on molecules, organisms, populations, and genomes.

  15. Graduate Studies

    The discipline of developmental biology draws on biochemistry, cell biology, genetics, molecular biology, and genomics. People in the department have a major interest in regenerative medicine and stem cell biology. The department is located in the Beckman Center for Molecular and Genetic Medicine within the Stanford University Medical Center.

  16. Foundations of Genetics and Genomics Program

    Earn a Foundations of Genetics and Genomics Certificate from Stanford Online. Learn about the research and technology transforming healthcare and medicine industries.

  17. Massive biomolecular shifts occur in our 40s and 60s, Stanford Medicine

    Xiaotao Shen, PhD, a former Stanford Medicine postdoctoral scholar, was the first author of the study. Shen is now an assistant professor at Nanyang Technological University Singapore. ... Snyder, the Stanford W. Ascherman, MD, FACS Professor in Genetics, and his colleagues were inspired to look at the rate of molecular and microbial shifts by ...

  18. Plant Biology

    Dissertation Defense Resources Cellular and Molecular Biology Training Program Stanford Biology PhD Preview Program Postdoctoral Scholars Student Awards Research

  19. Michael Snyder, Ph.D.'s Profile

    Bio. 1977 B.A, Chemistry and Biology, University of Rochester, NY 1978-1982 Ph.D. California Institute of Technology, CA Advisor: Dr. Norman Davidson 1982-1986 Postdoctoral Research Stanford University School of Medicine, CA Advisor: Dr. Ronald Davis 1986-2009 Faculty Dept of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 2009-present Dept of Genetics, Stanford ...

  20. Christina Curtis' Profile

    Bio. Christina Curtis, PhD, MSc is the RZ Cao Professor of Medicine, Genetics and Biomedical Data Science at Stanford University where she also serves as the Director of Artificial Intelligence and Cancer Genomics and of Breast Cancer Translational Research. Dr.

  21. Graduate Studies

    The key to selecting a successful graduate program is identifying the right research environment for you. In to ensure the Stanford Genetics program is the appropriate Home Program within Stanford Biosciences for you, we recommend ensuring that your scientific interests align with those of the department and our faculty.

  22. Genetics, Ph.D.

    About The Ph.D. program in the Department of Genetics at Stanford University offers graduate students the opportunity to pursue a discipline that encompasses both a set of tools and a coherent way of thinking about biology and medicine.

  23. Kyle Gabriel Daniels' Profile

    Assistant Professor of Genetics. Kyle obtained his BS in Biochemistry from the University of Maryland College Park in 2010, conducting undergraduate research with Dr. Dorothy Beckett, PhD. He obtained his PhD in Biochemistry with a certificate in Structural Biology and Biophysics. His dissertation is titled "Kinetics of Coupled Binding and ...

  24. Advanced Topics in Genetics and Genomics Program

    Earn an Advanced Topics in Genetics and Genomics Certificate from Stanford Online. Learn about the research and technology transforming healthcare and medicine industries.

  25. New biochemical pathway links diet, genetics and body weight

    The work was supported by the National Institutes of Health (grants DK105203, DK124265, DK111916 and K99AR081618), the Stanford Diabetes Research Center, the Stanford Cardiovascular Institute, the ...

  26. Life Science Research Professional 2

    Graduate students work alongside world-renowned faculty to pursue and shape foundational research that leads to breakthroughs and discoveries that shed new light on the past, influence the present, and shape the future. ... cell and developmental biology, genetics, and molecular biology. The offices, labs, and personnel of the Department of ...

  27. Massive biomolecular shifts occur in our 40s

    Snyder, the Stanford W. Ascherman, MD, FACS Professor in Genetics, and his colleagues were inspired to look at the rate of molecular and microbial shifts by the observation that the risk of ...